A package for rotated objects in \LaTeX*

Robin Fairbairns Sebastian Rahtz Leonor Barroca

printed November 6, 2019

Contents

1 Introduction 1
2 Usage 2
 2.1 Package options 2
 2.2 Float environments 2
 2.3 Other environments and commands 2
 2.4 Positioning 3
3 Setup 3
4 Turning and rotation environments 4
5 Sideways figures and tables 5
 5.1 Rotated captions only 9
6 Last-minute infrastructure 10
7 History 10

Abstract

This article documents a \LaTeX package, `rotating.sty`, which performs most sorts of rotation one might like, including rotation of complete floating figures and tables.

1 Introduction

The package provides:

- two new environments, \texttt{sidewaystable} and \texttt{sidewaysfigure}, each of which produces a single page-size float with contents rotated ± 90 degrees; and
• a variety of other rotation-related commands and environments.

Note that the package uses rotation facilities from the graphicx package. When generating DVI output, users should note that rotation is typically not visible in a DVI viewer: conversion to, and viewing, PostScript or PDF is necessary.

2 Usage

2.1 Package options

Sideways figures and tables always take up the whole page. In single-sided documents, they may be rotated so that the bottom of the figures is on the left (package option `counterclockwise`) or the right (package option `clockwise`). The default is to turn so that the bottom is on the right (option `clockwise`).

Option `anticlockwise` is an alias for `counterclockwise`.

If the `twoside` option has been given to the main document class (either explicitly, or implicitly as in the default for book class), the package will rotate sideways figures according to the page number (this requires at least two passes through \LaTeX). If you want the `twoside` option, but want the figures always in one direction, use the `figuresright` or `figuresleft` options to the package.

The package can produce a lot of logging information; the amount of information is controlled by the package options `quiet` (fewest messages; default), `log` and `chatter` (most messages).

All other options are passed to the graphicx package when it is loaded to provide rotation functions.

2.2 Float environments

The environments `sidewaystable` and `sidewaysfigure` introduce landscape-form floating tables and figures, respectively. (Each of the environments has a “starred” version, such as `sidewaystable*`, for a single-column float in a double-column area of the document.)

New rotated environments may be declared using the combined facilities of the float and rotfloat packages.

2.3 Other environments and commands

The package provides other \LaTeX environments:

`sideways` prints the contents of the environment turned through 90 degrees counterclockwise;

`turn` prints the contents turned through an arbitrary angle (the argument to the environment);

`rotate` prints the contents turned through an arbitrary angle but does not leave any space for the result.

The command `\turnbox{(angle)}{(matter to turn)}` is a macro version of the `rotate` environment.

A set of examples is given in the file `rotex.tex`
2.4 Positioning

Floats appear one to a page, and are positioned by spacer skips that appear (logically) above and below the floating object. The skips, \rotFPtop and \rotFPbot, are initialised from the standard \LaTeX{} (internal) \fptop and \fpbot skips. As a result, by default, rotated floats appear horizontally centred on their float pages.

Some sensible values for the registers are:

<table>
<thead>
<tr>
<th>\rotFPtop</th>
<th>\rotFPbot</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0pt plus 1fil</td>
<td>0pt plus 1fil</td>
<td>figure/table appears in middle (default value)</td>
</tr>
<tr>
<td>0pt</td>
<td>0pt plus 1fil</td>
<td>figure/table appears with its top nearest the edge of the page</td>
</tr>
<tr>
<td>0pt plus 1fil</td>
<td>0pt plus 2fil</td>
<td>figure/table’s bottom appears twice as far from the edge as the top does</td>
</tr>
</tbody>
</table>

3 Setup

Now we present the documented code. First, package options.

Note that the clockwise and counterclockwise options are present for compatibility only.

\begin{verbatim}
\PackageOptions{clockwise}{%
 \AtBeginDocument{\setkeys{Grot}{units=360}}%
}\end{verbatim}

\begin{verbatim}
\PackageOptions{counterclockwise}{%
 \AtBeginDocument{\setkeys{Grot}{units=-360}}%
}\end{verbatim}

\begin{verbatim}
\PackageOptions{anticlockwise}{\ds@counterclockwise}
\end{verbatim}

Control figure orientation

\begin{verbatim}
\PackageOptions{figuresleft}{%
 \rot@twosidefalse
 \def\rot@LR{0}%
}\end{verbatim}

\begin{verbatim}
\PackageOptions{figuresright}{%
 \rot@twosidefalse
 \def\rot@LR{-1}%
}\end{verbatim}

control messages:

\begin{verbatim}
\PackageOptions{quiet}{%
 \rot@messagefalse
 \let\rot@message\@gobble % pro tem -- should suppress altogether
}\end{verbatim}

\begin{verbatim}
\PackageOptions{log}{%
 \rot@messagefalse
 \def\rot@message{\PackageInfo{rotating}}%
}\end{verbatim}

\begin{verbatim}
\PackageOptions{chatter}{%
 \rot@messagefalse
 \def\rot@message{\PackageWarning{rotating}}%
}\end{verbatim}
A couple of commands for passing rotation direction around

\if@rot@twoside
 \def\rot\LR{-1}
\fi

Pass any unknown options to the graphicx package, and set up defaults and process the options.
\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{graphicx}}
\ExecuteOptions{clockwise,quiet}
\ProcessOptions

Other initialisation
\RequirePackage{graphicx}
\RequirePackage{ifthen}

The command \rotdriver allows a user to specify an initialisation file, a sort of non-automatically-loaded driver (in the graphics, hyperref sense).
\def\rotdriver#1{\makeatletter\input{#1.def}\makeatother}

The r@tfl@t counter is used when generating ‘labels’ for determining what side of the page the float is on, in twoside mode.
\newcounter{r@tfl@t}
\setcounter{r@tfl@t}{0}

Positioning skips (see above).
\newskip\rotFPtop \rotFPtop=\@fptop
\newskip\rotFPbot \rotFPbot=\@fpbot

4 Turning and rotation environments

sideways Environment to turn the contents through 90 degrees.
\def\sideways{%
 \Grot@setangle{90}%
 \setbox\z@\color@hbox\ignorespaces
}\def\endsideways{%
 \unskip\color@endbox
 \Grot@x\z@
 \Grot@y\z@
 \Grot@box
}

turn Rotate the contents of the environment, leaving the appropriate space
\def\turn#1{%
 \Grot@setangle(#1)%
 \setbox\z@\color@hbox\ignorespaces
}\def\endturn{%
 \unskip\color@endbox
 \Grot@x\z@
}
\begin{verbatim}
\Grot@y\z@
\Grot@box
\}

\rotate
.Rotate the contents of the environment, leaving no space.
\def\rotate#1{\Grot@setangle{#1}\setbox\z@\color@hbox\ignorespaces}
\def\endrotate{\unskip\color@endbox\Grot@x\z@\Grot@y\z@\wd0\z@\dp0\z@\ht0\z@}
\Grot@box

\end{verbatim}

\begin{verbatim}
\begin{turnbox}[\textwidth]{rotation}
A macro version of the 'rotate' environment.
\def\turnbox#1#2{\Grot@setangle{#1}\setbox\z@\hbox{{#2}}\Grot@x\z@\Grot@y\z@\wd0\z@\dp0\z@\ht0\z@}
\end{verbatim}

5 Sideways figures and tables

Now for the macros to provide a complete environment for sideways figures and tables. We define two environments \texttt{sidewaysfigure} and \texttt{sidewaystable} that fit in with the normal table and figure floats. These are ‘fixed’ environments that just do 90 degree rotation, but it would be easy to parameterize this to do other rotations if needed (the mind boggles...)

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloat#1{\@ifnextchar[\@xrotfloat{#1}}
\def\@xrotfloat#1[#2]{\@float{#1}[#2]}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloatbox#1{#1}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloatbox#1{#1}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloatbox#1{#1}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloatbox#1{#1}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\begin{verbatim}
\newsavebox\rot@float@box
\def\@rotfloatbox#1{#1}
\end{verbatim}

First a generalised ‘rotfloat’ environment. We need to intercept \LaTeX{}’s float macros, in order to change the assumed width of a float being \texttt{columnwidth}. We want it to work on a width of \texttt{textheight} so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we really want is for rotated floats to occupy the space they actually use. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (ie the height of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.
Set the float contents in a box of width \textwidth instead of \columnwidth.
\begin{lrbox}{\rot@float@box}
\begin{minipage}{\textheight}

\end@rotfloat

We call \LaTeX{}'s \texttt{end@float} macro having previously rotated the box \@currbox. The rotation is either clockwise or anti-clockwise, depending on whether the page is odd or even; in oneside mode it is always odd.
\def\end@rotfloat{\%}

If we are going to know whether pages are odd or even, we need to use the a variant \texttt{pageref} mechanism and our own specialised labels.
\def\end{\end{lrbox}}\%\stepcounter{r@tfl@t}\rot@label{RF\ther@tfl@t}\rot@pageref{RF\ther@tfl@t}{\R@@page}\edef\@tempa{Adding sideways @captype space on page \R@@page}\rot@mess@toks\expandafter{\@tempa}\wd\rot@float@box\z@\ht\rot@float@box\z@\dp\rot@float@box\z@
\vbox to \textheight{\%}

We need to know for sure which direction rotation is going to be in, so locally reset the graphics units.
\setkeys{Grot}{units=360}\%\if@rot@twoside\else\let\R@@page\rot@LR\fi\ifthenelse{\isodd{\R@@page}}{\%\if@rot@twoside\rot@mess@toks\expandafter{\the\rot@mess@toks (right hand page)}\vfill\@@line{\hskip\rotFPtop\rotatebox{90}{\box\rot@float@box}\hskip\rotFPbot}\vfill\rot@message{\the\rot@mess@toks}\%\}\else\%\if@rot@twoside\rot@mess@toks\expandafter{\the\rot@mess@toks (left hand page)}\vfill\@@line{\hskip\rotFPbot\rotatebox{-90}{\box\rot@float@box}\hskip\rotFPtop}\vfill\rot@message{\the\rot@mess@toks}\%\}\}\else\%\if@rot@twoside\rot@mess@toks\expandafter{\the\rot@mess@toks (left hand page)}\vfill\@@line{\hskip\rotFPbot\rotatebox{-90}{\box\rot@float@box}\hskip\rotFPtop}\vfill\rot@message{\the\rot@mess@toks}\%\}\else\%\if@rot@twoside\rot@mess@toks\expandafter{\the\rot@mess@toks (left hand page)}\vfill\@@line{\hskip\rotFPbot\rotatebox{-90}{\box\rot@float@box}\hskip\rotFPtop}\vfill\rot@message{\the\rot@mess@toks}\%\}
The following definitions set up two environments, \texttt{sidewaystable} and \texttt{sidewaysfigure}, which uses this type of float. Naturally, users may need to change these to suit their local style. Both contribute to the normal lists of figures and tables.

\begin{verbatim}
\def\sidewaysfigure{\@rotfloat{figure}}
\let\endsidewaysfigure\end@rotfloat
\def\sidewaystable{\@rotfloat{table}}
\let\endsidewaystable\end@rotfloat
\end{verbatim}

Handling double column floats

\begin{verbatim}
\@rotdblfloat
\end{rotdblfloat}
\def\@rotdblfloat{\if@twocolumn\expandafter\@rotdbflt\else\expandafter\@rotfloat\fi}
\def\@rotdbflt#1\[#2\]{\@float{#1}\[#2\]}
\setkeys{Grot}{units=360}
\if@rot@twoside\let\R@@page\rot@LR\fi
\ifthenelse{\isodd{\R@@page}}{\ifrot@messages\if@rot@twoside\thenextchar{\@rotxdblfloat{#1}{\@rotxdblfloat{#1}[tp]}\@float{#1}[#2]\ht\rot@float@box\dp\rot@float@box}{\@rot@twoside}{\let\R@@page\rot@LR}}{\advance\@tempdimb by \ht\rot@float@box\@tempdimb}{\renewcommand{\rot@message}{BOX wd: the\ht\rot@float@box, dp: the\dp\rot@float@box: so shift by .5 of the @tempdimb}}
\end{verbatim}

We need to know for sure which direction rotation is going to be in, so locally reset the graphics units.

\begin{verbatim}
\setkeys{Grot}{units=360}
\if@rot@twoside \let\R@@page\rot@LR \fi
\ifthenelse{\isodd{\R@@page}}{\ifrot@messages\\renewcommand{\rot@message}{BOX wd: the\ht\rot@float@box, dp: the\dp\rot@float@box: so shift by .5 of the @tempdimb}}{\renewcommand{\rot@message}{BOX wd: the\ht\rot@float@box, dp: the\dp\rot@float@box: so shift by .5 of the @tempdimb}}
\end{verbatim}
Note that we used \rot@label, not \label; this variant writes (just) the true page number, not the value of \thepage; this “true” value then needs special treatment in \rot@protected@write, just as \thepage already has. Note that \rot@refundefinedfalse for end-document to pick up. (later...)

\begin{sidewaysfigure}
\centering
\begin{sidewaystable}
\begin{tabular}{|c|c|}
\hline
A & B \\
\hline
1 & 2 \\
\hline
\end{tabular}
\end{sidewaystable}
\end{sidewaysfigure}
\rot@protected@write\begingroup\let\rot@the@page\relax\let\protect\@unexpandable@protect\edef\reserved@a{\write\#1\#3}\reserved@a\endgroup\if@nobreak\ifvmode
nobreak\fi\fi
\rot@refundefinedfalse\rot@mess@toks A token register to build up debugging messages
\newtoks\rot@mess@toks

5.1 Rotated captions only

\rotcaption \@makerotcaption

Sometimes you may find that the rotation of complete figures does not give quite
the right result, since they always take up the whole page. You may prefer to
rotate the caption and the float contents separately within a conventional fig-
ure. Here we offer a suggestion for a \rotcaption command, which inserts the
caption rotated by 90 degrees. It is essentially a copy of the normal captioning
code. Packages which define the \@makecaption command may also need to define
\@makerotcaption.
\def\rotcaption{\refstepcounter{@captype}{\@dblarg{\@rotcaption}@captype}}
\long\def\@rotcaption[#1]{#2}{#3}{%
\addcontentsline{\csname ext@#1\endcsname}{#1}{\protect\numberline{\csname the#1\endcsname}{\ignorespaces #2}}%
\par
\begingroup
\@parboxrestore
\normalsize
\@makerotcaption{\csname fnum@#1\endcsname}{#3}%
\endgroup}
\long\def\@makerotcaption#1#2{%
\setbox\@tempboxa\color@hbox#1: #2\color@endbox
\ifdim\wd\@tempboxa > .8\vsize
\rotatebox{90}{\begin{minipage}{.8\textheight}#1: #2\end{minipage}}%
\else
\rotatebox{90}{\box\@tempboxa}%
\fi
\nobreak
\hspace{12pt}%
\langle/\package\rangle
6 Last-minute infrastructure

These macros aren’t provided in \LaTeX{}, by default (I seem to have assumed that
they were...)
\begin{verbatim}
\AtBeginDocument{\providecommand\color@hbox{\hbox\bgroup}\
\providecommand\color@vbox{\vbox\bgroup}\
\providecommand\color@endbox{\egroup}%
}
\end{verbatim}

7 History

Version 2.0 is a complete re-write, with most of the work now being done by the
\LaTeX\ 2ε graphics package.

Version 2.1 provides a ‘clockwise’ option to reinstate the behaviour described
in the ‘\LaTeX{} Companion’

Version 2.2 just intercepts the standard float macros instead of copying and
changing the. The ‘twoside’ option is obeyed.

Version 2.5 corrects problems in sideways figures.

Version 2.6 is a rewrite of the sideways floats via Frank Mittelbach (to whom
many thanks for looking at the mangy code).

Version 2.7 is checked for \LaTeX{} of December 94, and adds the option of twoside
behaviour independent of the general twoside.

Version 2.8 cleans up some mistakes pointed out by Harald Axel Sommerfeldt.

Version 2.9 cleans up some (more) mistakes pointed out by Harald Axel Som-
merfeldt.

Version 2.13a permits positioning of rotated floats in the same way as they are
positioned in ‘normal’ floats.

Version 2.14 is the first to be published anywhere as the outcome of mainte-
nance by Robin Fairbairns.

Version 2.15 deals with page-numbering bug for auto-float-rotation, and tidying
of messages; published to ctan

Version 2.16 uses colour boxes as necessary; published to ctan. Version 2.16a
provides the colour box commands \AtBeginDocument.