1 Introduction

These macros implement the trigonometric functions, sin, cos and tan. In each case two commands are defined. For instance the command \CalculateSin{33} may be issued at some point, and then anywhere later in the document, the command \UseSin{33} will return the decimal expansion of sin(33°).

The arguments to these macros do not have to be whole numbers, although in the case of whole numbers, \LaTeX{} or plain \TeX{} counters may be used. In \TeX{}Book syntax, arguments must be of type: \texttt{⟨optional signs⟩⟨factor⟩}

Some other examples are:
\CalculateSin{22.5}, \UseTan{\value{mycounter}}, \UseCos{\count@}.

Note that unlike the psfig macros, these save all previously computed values. This could easily be changed, but I thought that in many applications one would want many instances of the same value. (eg rotating all the headings of a table by the same amount).

I don’t really like this need to pre-calculate the values, I originally implemented \UseSin{} so that it automatically calculated the value if it was not pre-stored. This worked fine in testing, until I remembered why one needs these values. You want to be able to say \texttt{\dimen2=\UseSin{30}\dimen0}. Which means that \texttt{\UseSin} must expand to a \texttt{⟨factor⟩}.

2 The Macros

\begin{verbatim}
\infty
\@clxx
\@lxxi
\@mmmmlxviii
\end{verbatim}

Some useful constants for converting between degrees and radians.

\begin{equation}
\frac{\pi}{180} \approx \frac{355}{113 \times 180} = \frac{71}{4068}
\end{equation}

\begin{verbatim}
\chardef\infty=90
\chardef\@clxx=180
\end{verbatim}

*This file has version number v1.10, last revised 2016/01/03.
The approximation to \(\sin(x) \). I experimented with various approximations based on Tchebicheff polynomials, and also some approximations from a SIAM handbook ‘Computer Approximations’. However the standard Taylor series seems sufficiently accurate, and used by far the fewest \TeX\ tokens, as the coefficients are all rational.

\[
\sin(x) \approx x - (1/3!)x^3 - (1/5!)x^5 + (1/7!x^7 - (1/7!)(x^2 + 7!/3!x^2 + 7!/3!)x^2
\]
\[
\approx \frac{(((7!/9!x^2 - 7!/7!x^2 + 7!/5!x^2 + 7!/3!)x^2 + 7!/1!x^2)}{7!}
\]
\[
= \frac{(((172x^2 - 1)x^2 + 42)x^2 + 840)x^2 + 5040)x}{5040}
\]

The nested form used above reduces the number of operations required. In order to further reduce the number of operations, and more importantly reduce the number of tokens used, we can precompute the coefficients. Note that we can not use \(9! \) as the denominator as this would cause overflow of \TeX’s arithmetic.

\[\@coeffz\] Save the coefficients as \(\text{(math)}\)\ chars.
\[\@coffe\] \chdef\@coffe=72
\[\@coffb\] 7\chdef\@coffb=42
\[\@coffc\] 8\chdef\@coffc=42
\[\@coffe\] 9\mathchdef\@coffe=840
\[\@coffe\] 10\mathchdef\@coffe=5040

\TG@rem@pt The standard trick of getting a real number out of a \langle dimen \rangle. This gives a maximum accuracy of approx. 5 decimal places, which should be sufficient. It puts a space after the number, perhaps it shouldn’t.
\{\catcode\’=12\catcode\p=12\gdef\noPT#1pt{#1}\}
\def\TG@rem@pt#1{\expandafter\noPT\the#1\space}

\TG@term Compute one term of the above nested series. Multiply the previous sum by \(x^2 \) (stored in \@tempb, then add the next coefficient, \#1.
\[\def\TG@term\#1{%\dimen@\@tempb\dimen@\advance\dimen@ \#1\p@}\]

\TG@series Compute the above series. The value in degrees will be in \dimen@ before this is called.
\[\def\TG@series{%\dimen@\@lxxi\dimen@\divide \dimen@ \@mmmmlxviii\dimen@ now contains the angle in radians, as a \langle \dimen \rangle. We need to remove the units, so store the same value as a \langle factor \rangle in \@tempa.
\[\edef\@tempa{\TG@rem@pt\dimen@}\]
Now put \(x^2 \) in \dimen@ and \@tempb.
\[\dimen@\@tempa\dimen@\edef\@tempb{\TG@rem@pt\dimen@}\]

\[\]
The first coefficient is $1/72$.

```latex
\divide\dimen0@\coeffz
\advance\dimen0@-\mone\p@ \TG@term{\coeffb}
\TG@term{-\coeffc} \TG@term{\coeffd}
```

Now the cubic in x^2 is completed, so we need to multiply by x and divide by $7!$.

```latex
\dimen0@\tempa \divide\dimen0@ \coeffd}
\CalculateSin
If this angle has already been computed, do nothing, else store the angle, and call \TG@@sin.

```latex
\def\CalculateSin#1{{%\expandafter\ifx\csname sin(#1)\endcsname\relax\dimen@=#1\p@ \TG@@sin\expandafter\xdef\csname sin(#1)\endcsname{\TG@rem@pt\dimen@}\fi}}
```

\CalculateCos
As above, but use the relation $\cos(x) = \sin(90 - x)$.

```latex
\def\CalculateCos#1{{%\expandafter\ifx\csname cos(#1)\endcsname\relax\dimen@=\nin@ty\p@ \advance\dimen@-#1\p@ \TG@@sin\expandafter\xdef\csname cos(#1)\endcsname{\TG@rem@pt\dimen@}\fi}}
```

\TG@reduce
Repeatedly use one of the the relations $\sin(x) = \sin(180 - x) = \sin(-180 - x)$ to get $x$ in the range $-90 \leq x \leq 90$. Then call \TG@series.

```latex
\def\TG@reduce#1#2{\dimen@#1#2\nin@ty\p@ \advance\dimen@#2-\clxx\p@ \dimen@-\dimen@ \TG@@sin}
```

\TG@@sin
Slightly cryptic, but it seems to work...

```latex
\def\TG@@sin{%\ifdim\TG@reduce>+%\else\ifdim\TG@reduce<-%\else\TG@series\fi\fi}
```

\UseSin
Use a pre-computed value.

```latex
\def\UseSin#1{\csname sin(#1)\endcsname}
```

\UseCos
A few shortcuts to save space.

```latex
\def\z@num{0}
\def\@tempa{1}
\def\@tempb{-1}
```
A few more added in 1.10 (previously in pdftex.def)

\CalculateTan

Originally I coded the Taylor series for tan, but it seems to be more accurate to just take the ratio of the sine and cosine. This is accurate to 4 decimal places for angles up to 50°, after that the accuracy tails off, giving 57.47894 instead of 57.2900 for 89°.

\UseTan

Just like \UseSin.

\two@fourteen

two constants needed to keep the division within \TeX's range.

\Oiv

Predefine tan(±90) to be an error.