% 10/08/93 %
% ibm RESume file, Uncommented, Filled in, /pub/ibmres-tex/res_u_f.ltx %
% George B. Leeman, Jr., leeman@watson.ibm.com. %
% Please read /pub/README.FTP on software.watson.ibm.com before using %
% this file. Change the text in the arguments, then run LaTeX on this %
% file to produce resume, cover letter, mailing label, and selected %
% abstracts. %
\documentstyle[12pt,ibmres]{article}
\begin{document}
\name{George B. Leeman, Jr.}
\preferredtitle0{Mr. Leeman}
\school0{The University of Michigan}
\email{leeman@um.cc.umich.edu}
\discipline0{mathematics}
\highestdegree0{PhD}
\degreeyear0{1972}
\workaddressandphone{
The University of Michigan\\
Department of Electrical Engineering and Computer Science\\
Ann Arbor, MI 48109-2122\\
(313) 764--8504
}
\homeaddressandphone{
2904 Washtenaw Avenue, Apt. 1B\\
Ypsilanti, MI 48198\\
(313) 434-1815
}
\presentstatus{Postdoc Student}
\immigrationstatus{US citizen}
\typeofpositiondesired{Permanent}
\availabledate{June, 1973}
\employerspecifictitle{}
\employerspecificdata{}
\objective{To obtain a research or development position in the areas of
stochastic analysis or program correctness.}
\education{}
\when{Aug. 1972}
\place{The University of Michigan}
\location{Ann Arbor, MI}
\degree{PhD in Mathematics; advisor: Peter L. Duren; thesis title:
The constrained coefficient problem for typically real functions.}
\gpa{8.217}
\outof{9.000}
\when{May 1969}
\place{The University of Michigan}
\location{Ann Arbor, MI}
\degree{MA in Mathematics}
\gpa{8.041}
\outof{9.000}
\when{June 1968}
\place{Yale University}
\location{New Haven, CT}
\degree{BA in Mathematics}
\gpa{abolished 11/30/67; class percentile: 97.}
\outof{}
\employment{}
\when{summers, 1970, 1971}
\place{The University of Michigan}
\location{Ann Arbor, MI}
\text{Instructor, teaching undergraduate introductory and intermediate
calculus courses.}
\when{summers, 1965--1969}
\place{Perkin-Elmer Corporation}
\location{Norwalk, CT}
\text{Scientific programming for problems in engineering and physics.}
\skills{}
\text{Programming in FORTRAN, IBM 360 Assembler, SNOBOL4, LISP, C.}
\honors{}
\text{National Science Foundation Traineeship, September, 1968 to August, 1972.}
\text{BA Magna Cum Laude, honors with exceptional distinction, 1968.}
\text{Election to Phi Beta Kappa, November, 1967.}
\publications{}
\text{The seventh coefficient of odd symmetric univalent functions,
G. B. Leeman, Jr.,
to appear in Duke Mathematical Journal, vol. 43, no. 2, June,
1973.}
\text{A new proof for an inequality of Jenkins,
G. B. Leeman, Jr.,
Proceedings of the American Mathematical Society, vol. 54, Jan.
1973, 114--116.}
\text{The constrained coefficient problem for typically real functions,
G. B. Leeman, Jr.,
Transactions of the American Mathematical Society, vol. 186,
Dec. 1972, 177--189.}
\miscellaneous{Member of Board of Directors, Ridgefield Symphony Orchestra,
Ridgefield, CT.}
\references{}
\referencename{Peter L. Duren, Professor, The University of Michigan,
(313) 764-0202.}
\referenceemail{duren@um.cc.umich.edu}
\referencename{Bernard A. Galler, Professor, The University of Michigan,
(313) 764-5832.}
\referenceemail{bernard\_a.\_galler@um.cc.umich.edu}
\referencename{Maxwell O. Reade, Professor, The University of Michigan,
(313) 764-7227.}
\referenceemail{}
\coverletter{
The University of Michigan\\
Department of Electrical Engineering and Computer Science\\
1301 Beal Avenue\\
Ann Arbor, MI 48109-2122
}
\rightlines{
George B. Leeman, Jr.\\
leeman at um.cc.umich.edu\\
(313) 764-8504
}
\recipient{
Manager, PhD Recruiting\\
IBM Thomas J. Watson Research Center\\
P. O. Box 218\\
Yorktown Heights, New York 10598
}
\letterbody{
Dear Sir:
\bigskip I would like to apply for a position in the research and development
divisions of your corporation. I have included a resume and a few abstracts
from some of my published papers.
\bigskip I can be reached at the number shown above every afternoon from
1:00 P.M. to 5:00 P.M. I answer electronic mail throughout each day, including
weekends.
\bigskip Thank you for your consideration.
}
\closing{
Sincerely yours,\\
George B. Leeman, Jr.
}
\cc{}
\encl{resume\\selected abstracts}
\ps{}
\letterlabel{}
\abstracts{}
\text{
{\em The seventh coefficient of odd symmetric univalent functions, by
G. B. Leeman, Jr.}\vskip 3ex
Let $S_{odd}$ be the collection of all functions $f(z) = z +
c_3z^3 + c_5z^5 + c_7z^7 + \cdots$ odd, analytic, and one-to-one in the unit
disk. In 1933 Fekete and Szeg\"o showed that for all $f$ in $S_{odd}$, $|c_5|
\leq 1/2 + e^{-2/3}$, but no sharp bounds have been found since that time, even
for the subclass of $S_{odd}$ with real coefficients. In this paper we find the
sharp bound $|c_7|\leq 1090/1083$ for this subclass, and we identify all
extremal functions.\vskip 7 ex
}
\text{
{\em A new proof for an inequality of Jenkins, by G. B. Leeman, Jr.}\vskip 3 ex
A new proof of Jenkins' inequality
$${\rm Re}(e^{2i\theta}a_3 - e^{2i\theta} a_2^2 - \tau e^{i\theta}a_2) \leq 1 +
{3\over8} \tau^2 - {1\over4}\tau^2 \log ({\tau\over4}),\ \ 0 \leq \tau \leq 4,$$
for univalent functions $f(z) = z + \sum_{n=2}^\infty a_n z^n$ is
presented.\vskip 7 ex
}
\text{
{\em The constrained coefficient problem for typically real functions, by
G. B. Leeman, Jr.}\vskip 3 ex
Let $-2 \leq c \leq 2$. In this paper we find the precise upper
and lower bounds on the $n$th Taylor coefficient $a_n$ of functions $f(z) = z +
c z^2 + \sum_{k=3}^\infty a_k z^k$ typically real in the unit disk for
$n=3,4,\cdots \ .$ In addition all the extremal functions are identified.
}
\end{document}