The New Computer Modern FontFamily
version 4.6

Antonis Tsolomitis
June 26, 2023

Contents

1 Introduction 3

2 How to load the fonts 3

3 The Latin alphabet 4
 3.1 Ligatures and stylistic alternatives in Latin................. 4
 3.2 Old Italic .. 4
 3.3 Diacritics Stacking .. 4

4 Greek 5
 4.1 Other character variants 6
 4.2 Prosodic symbols ... 7
 4.3 Archaic Greek writing .. 7
 4.4 Support for Papyrology 8
 4.5 Support for Chemistry 8

5 Russian 9

6 Hebrew 9

7 Coptic and Epact Numbers 9

8 Cherokee 9

9 Medieval Latin and Uncial Greek 10

10 Braille 10

11 Ipa symbols 10

12 Bold Sans 12
1 Introduction

The NewComputerModern FontFamily is a huge extension ("huge" in terms of the number of additional glyphs) of the \LaTeX fonts. It is not just a family adding random missing glyphs but it adds support for several more languages and shapes needed for academic (and not only) work. Currently it supports among others, Greek1, Cyrillic2, Hebrew, Cherokee and Coptic. Since it supports diacritics stacking the number of languages that use the Latin alphabet is greatly expanded. Diacritics stacking is also needed for Greek for papyrological work and this is also supported.

Version 4.0 adds to the classic design of computer modern new shapes for Latin and Greek, in particular it adds families for Medieval Latin and Uncial Greek matching in style to the main family.

In terms of weights and sizes, all of its shapes come in Regular, Book weights at 10 and 8 point sizes and in Bold at 10 points.

Mathematics is also supported in Regular and Book weights, currently providing a full coverage of the Unicode Math blocks (with a few more glyphs needed for Mathematics that Unicode has forgotten to encode).

What follows is a sequence of commands and results so as to show how to access all features of the fonts. Character tables are also included.

2 How to load the fonts

The simpler way to load the fonts is through the \texttt{fontsetup} package. The command
\begin{verbatim}
\usepackage[default]{fontsetup}
\end{verbatim}
will load the Book weight of the NewCM family, and
\begin{verbatim}
\usepackage[olddefault]{fontsetup}
\end{verbatim}
will load the Regular weight.

Also notice that the fonts support the microtype package for fine typographic tuning. See the documentation of microtype for this.

1from Claudio Beccari’s Greek.
2from the \texttt{cmu} package.
3 The Latin alphabet

3.1 Ligatures and stylistic alternatives in Latin

The Serif font includes additional ligatures fb fb
Please note that stacking is by default supported with xetex. With lualatex you have to add the option \texttt{Renderer=Harfbuzz}, say by
\texttt{\addfontfeature{Renderer=Harfbuzz}}.

Also notice that your text editor may not support stacking. The editor may show the accents one after the other, but the pdf produced by xetex or lualatex will have the accents stacked.

4 Greek

The full Unicode Greek block is supported, which is
• U0370–U03FF for monotonic, where missing glyphs, such as Heta (Ϝ), Pamphilian digamma (ϝ) etc, have been added. For example, it is now possible to write βιβλίο instead of βιβλίο.
• U1F00–U1FFF for polytonic, and
• U10140–U1018F for ancient Greek numbers.

Θεώρημα 4.1 (Πυθαγόρειον) Εν τοῖς ὀρθογώνιοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχομένων πλευρῶν τετράγωνοις.

Small Caps is included (in Mono font too) and all polytonic accents of Greek. Ypogegrammeni is the default for all characters including Small Caps and prosgegrammeni is offered as an alternative shape in the ss01 lookup table:

<table>
<thead>
<tr>
<th></th>
<th>ypogegrammeni</th>
<th>prosgegrammeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>ἀ ἡ ὀ ὁ Ω</td>
<td>ἀ ἡ ὀ ὁ Ω, ἁ ὁ, ω, ι, Ω, ι, Ω</td>
</tr>
<tr>
<td>sans</td>
<td>ἀ ἡ ὀ ὁ Ω</td>
<td>ἀ ἡ ὀ ὁ Ω, ἁ ὁ, ω, ι, Ω, ι, Ω</td>
</tr>
<tr>
<td>mono</td>
<td>ἀ ἡ ὀ ὁ Ω</td>
<td>ἀ ἡ ὀ ὁ Ω, ἁ ὁ, ω, ι, Ω, ι, Ω</td>
</tr>
</tbody>
</table>

The prosgegrammeni alternates can be accessed with
\texttt{\textprosgegrammeni{<text>}}
or the
\texttt{\{\prosgegrammeni <text>\}}
of the fontsetup package.

4.1 Other character variants

Guillemots (left and right) have a different shape for Greek. For this to work the fonts must be loaded with the cv04 character variant.

Compare the default guillemots: «» with Greek guillemots: «».
There is a serious problem with Unicode and the Greek anoteleia (U0387); the Greek semicolon. Unicode “thinks” that this character is the same with periodcentered (U00B7). This influences the way keyboards are configured by several vendors such as xorg. Anoteleia is a dot written at x-height and not at 1/2 the x-height as the periodcentered. Although Unicode recognizes the problem\(^3\), although they recognize that with their current standard you can not correctly write the Greek language, they refuse to fix it, justifying it by saying the magical words “backwards compatibility” (to a ...mistake, one could add).

NewComputerModern can not allow this, as it defies the purpose of its existence, which is to properly write every supported language. So enabling the CharacterVariant 04 (cv04) in addition to correct guillemots for Greek it maps periodcentered (produced by the keyboards (in Greek Linux keyboards by AltGr+q) to proper anoteleia.

It also fixes a long standing issue with the Greek apostrophe (‘)(U1FBD) which is not the same with quoteright (’)(U2019). U1FBD named as “Greek Koronis” by Unicode is the proper character.

Another problem that has to do with quotes inside quotes. The internal quotes in Greek should be written with the characters quotedblleft and quotedblbase\(^4\). For example, this is correct for Greek

\[«άλφα “βήτα”»\]

But the keyboards only produce quotesingle which is already mapped to apostrophe and it is difficult to remember the names “quotedblleft” and “quotedblbase”. So when enabling cv04 one can define the commands

\[\texttt{\newcommand\leftgrquotes{\char"201C}}\]
\[\texttt{\newcommand\rightgrquotes{\char"201E}}\]

for the rare case one needs quotes inside quotes. The fontsetup package does this automatically for Greek if the xgreek package has been loaded before the fontsetup package. Otherwise, for non-Greek documents with small passages of Greek, the author may enable cv04 by creating a custom command such as

\[\texttt{\newcommand\propergreek[CharacterVariant=4]{NewCM10-Book.otf}}\]

A phrase with Greek quotes inside quotes, proper anoteleia, and proper apostrophe is

\[«φώναζε: “απ᾽ έξω την προπαιδεία,” σαν εκδίκηση ακουγόταν...\]

4.2 Prosodic symbols

In Greek philology and in linguistics it is often needed to stack accent-type symbols above letters, even if they are not vowels. Although rare in writings, it is for example valid to place dieresis over the consonants π, τ and κ of the nasal

\(^3\)personal communication
\(^4\)Μανόλης Τριανταφυλλίδης, Νεοελληνική Γραμματική της δημοτικής, Ανατύπωση της έκδοσης του ΩΕΕ 1941 με διορθώσεις, Θεσσαλονίκη 2002, σελ. 66, ενότητα 133.
complexes μη, νπ, γχ when it is necessary to show that these are pronounced, as written, voiceless, and not voiced. For example,

κομέφεσα, αντιαντικός, ελεγκτής

(see previous footnote). The fonts support this writing if a combining dieresis is placed after the letter to receive it. The combining dieresis is the character U0308. On Linux desktops this is easily entered pressing Alt+Control+u, release them, and type the sequence 0308 and space.

More than that, in linguistics, they need to combine several accents above Greek letters. All this stacking of accents is supported by the fonts. For example, one can write

\begin{align*}
\dot{a} & \ddot{e} \ddot{i} \ddot{A} \ddot{A} \ddot{O} \ddot{a} \ddot{X} \ddot{i} \\
\end{align*}

by placing the combining accents from the Unicode block U0300–U0362 plus the usual Greek accents after the letter. So the above was typed as

\begin{align*}
\alpha^{-} & \varepsilon^{-} \alpha^{-} \alpha^{-} \Omega^{-} \alpha^{-} \chi^{-} \iota^{-} \\
\end{align*}

4.3 Archaic Greek writing

The Sans Serif Regular font provides access to 6th century bce and 4th century bce Greek capitals in ss04 and ss03 lookups. The \texttt{fontsetup} package provides commands such as

\begin{itemize}
 \item \texttt{\textivbce{}, \ivbce, \textvibce{} and \vibce}
\end{itemize}

6th century bce:

\begin{center}
ΜΗΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙΤΩ
\end{center}

4th century bce:

\begin{center}
ΜΗΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙΤΩ
\end{center}

Moreover, all fonts (except Mono & Math) support Ancient Greek Numerals (the full Unicode block of Greek digits U10140–U1018E is supported), with most symbols designed from scratch (and did not exist in C. Beccari’s original fonts). A few of the new symbols:

\begin{center}
𐅄𐅅𐅆𐅇
\end{center}

The four numerals that already existed in this range (that is U10144–U10147) in Beccari’s fonts have been altered to a new design matching the style of cm but also provide some Ancient Greek flair. The new designs in Serifed and SansSerifed are:

\begin{center}
𐅄𐅅𐅆𐅇
\end{center}
The \texttt{fontsetup} package provides commands for all of the above symbols. The commands follow the Unicode name of each slot (minus the “Greek Acrophonic”). So the Unicode slot U1014F named “Greek Acrophonic Attic Five Staters” can be accessed with the command \texttt{\atticfivestaters} and it gives \texttt{𐅏}; and the slot u10182 named “Greek Kyathos Base Sign” can be accessed with the command \texttt{\greekkyathosbasesign} and it gives \texttt{K}.

4.4 Support for Papyrology

Papyrology needs to declare that a glyph is missing from the papyrus or the papyrus is worn at this point and the papyrologist adds the missing glyph but it is not clear from the papyrus. This is done by adding a dot below the glyph and it is supported for all Greek glyphs in the upright fonts monotonic or polytonic:

\[
\text{Α̣ Ἀ̣ ᾞ̣ ἇ̣ ᾦ̣ ῥ̣}
\]

where in the source we just typed the dot below (char U0323) after the glyph. This feature is supported for the 4th bce and 6th bce Greek in Sans:

\[
\GammạΕ̣ Ω̣ Μ̣ Ε̣ Τ̣ Ρ̣Ι̣Α̣ Γ̣Ε̣ Ω̣ Μ̣ Ε̣ Τ̣ Ρ̣Ι ̣Α̣
\]

4.5 Support for Chemistry

It happens often that Greek upright characters are needed in Chemistry. People often have trouble with this (and this is why packages such as \texttt{chemgreek} exist). If Greek keyboard is available then it is easy; you just type in Greek, say \texttt{β-glucan} to get “β-glucan”. But many writers do not have the Greek keyboard enabled, and they do not need to. Usually they type \texttt{β-glucan} but the result “β-glucan” is not satisfying. One can use the “up” versions typing \texttt{\upbeta-glucan} but still the result “β-glucan” looks more Math than Chemistry. To help with this, the \texttt{fontsetup} package provides commands such as \texttt{\chemAlpha}, \texttt{\chemalpha}, \texttt{\chemBeta}, \texttt{\chembeta}, etc. So this information essentially would only belong to the \texttt{fontsetup} documentation if it was not for kappa and rho. If we type in Greek \texttt{κ-compound} we get “ϰ-compound” which is not satisfying, as kappa is too cursive for this use. So the NewCM family provides an alternative kappa for this reason and this is how \texttt{\chemkappa} is defined in \texttt{fontsetup}:

\[
\newcommand{\chemkappa}{\textrm{\char"03F0}}
\]

We write \texttt{\chemkappa-compound} and now get “κ-compound”.

(\texttt{\textrm} command in the above definition is there to make the command work in math mode too.) Similar is the situation for \texttt{\chemrho (ρ)} and \texttt{\chemrhoalt (ϱ)}.
5 Russian

Russian is supported using the glyphs from the cmu package but it has considerable improvements (for example, the quality of the bold sans (see below)).

Я помню чудное мгновенье:
Передо мной явилась ты,
Как мимолетное виденье,
Как гений чистой красоты.

(Пушкинъ)

Again, as in Greek there is a different kind of guillemots for Russian which are available in CharacterVariant 3 (cv03). Compare:

Defaults guillemots: «» Russian guillemots: «» Greek guillemots: «»

Same is the situation with Russian emdash which is shorter than the default:

Default emdash: —
Russian emdash: —

6 Hebrew

The Hebrew blocks U0590–U05FF and Hebrew Presentation forms UFB1D–UFB4F are fully covered. and A few letters from Hebrew:

אברדיהשלץ

7 Coptic and Epact Numbers

The Coptic language is fully supported. This covers the Coptic blocks in the Greek and Coptic Unicode block (U03E2–U03EF), the full Coptic Unicode block (U2C80–U2CFF) and the Coptic Epact Numbers (U102E0–U102FF). A few letters from Coptic and Epact numbers follow:

全能神祇

8 Cherokee

Both Unicode blocks U13A0–13FF and UAB70–UABBF for Cherokee are supported. A few letters are:

Cherokee

10
9 Medieval Latin and Uncial Greek

The family includes new shapes for medieval and uncial Greek. The \texttt{fontsetup} package provides \texttt{textuncial\{<text>\}} and \texttt{\uncialtext} to use this shape. Let us write a sentence in this shape:

\begin{quote}
The Pythagorean Theorem is one of the most important theorems in Mathematics. \\
Το Πυθαγόρειο Θεώρημα είναι από τα σημαντικότερα θεώρημα των Μαθηματικών.
\end{quote}

10 Braille

Braille, both 6dot (uni2801–uni283F) as well as 8dot (uni2840–uni28FF) patterns are included in two versions. The Regular font provides the characters for sighted persons (such as teachers) so they can easily see which dots are on and which off. The Sans font contains the true Braille characters. I decided to have the sighted version in the Regular font since a blind person does not need the real Braille pattern, as those are produced by embossers. The Braille patterns here are meant as fonts to typeset text mainly for sighted persons.

\begin{center}
\begin{tabular}{l|l|l}
 & 6dot & 8dot \\
\hline
Regular version & \begin{tabular}{c}⢅⣀⢞⢛
\end{tabular} & \begin{tabular}{c}⢅⣀⢞⢛
\end{tabular} \\
Sans version & \begin{tabular}{c}⢅⣀⢞⢛
\end{tabular} & \begin{tabular}{c}⢅⣀⢞⢛
\end{tabular} \\
\hline
\end{tabular}
\end{center}

11 Ipa symbols

IPA symbols are included and following a suggestion of Huanyu Liu the kerning found in \texttt{tipa} package has been added here and further improved. Moreover the letters eth, eng, beta, theta and chi exists in IPA-style in the fonts and are accessible in the ss05 lookup table since they are in a different design from the Latin and Greek letters. You can access this lookup table using the \texttt{\textipa} command of the \texttt{fontsetup} package.

\begin{center}
\begin{tabular}{l|l|l}
 & Non-IPA & IPA \\
\hline
Regular & \begin{tabular}{c}ð ß θ χ
d η β θ χ
\end{tabular} & \begin{tabular}{c}ð ß θ χ
d η β θ χ
\end{tabular} \\
Sans & \begin{tabular}{c}ð ß θ χ
d η β θ χ
\end{tabular} & \begin{tabular}{c}ð ß θ χ
d η β θ χ
\end{tabular} \\
\hline
\end{tabular}
\end{center}

I am grateful to निरेंजन (Niranjan) for suggesting and testing all the IPA improvements that follow:

The joining of two characters such as ts, dz, kp, tʃ etc is also supported. The low tie is the character U035C and the upper tie is U0361. The ts is produced by typing the sequence t then the low tie and then s. Similarly kp is produced by typing the sequence k then the upper tie and then p. For tʃ and dʒ the fonts have a contextual chaining substitution table that uses a tie which prints
lower so it does not touch ʃ and ʒ. In cases that one wants to show the tie as x__y^_z then one needs to enable the cv5 character variant since the tie characters (U035C and U0361) are marks and not base glyphs. One can do that with a command such as
\newfontfamily{\showtie}[CharacterVariant=5]{NewCM10-Book.otf}

There is also an older practice that such sequences are joint into a ligature. This is not the modern way of writing but it seems than many people in the linguistics still prefer it. The fonts support this, if one enables the \ipa table (local ipa) of the fonts. This can be done by adding the RawFeature=+ipa to the font specs when loading it and it is done automatically with the commands \textoldipa{arg} and \{\oldipatext arg\} of the fontsetup package.

For example, \textoldipa{ts, tʃ} produces ʦ, ʧ.

All other symbols of the \ipa package are supported. Some examples are:
\p, 'l, l, d, j, s, k, m, t, ʃ, etc.

It is worth noting that all of the above is also available in the Mono family:

|t̼|t̺|t̻|t̼|t̺|t̻|t̼|t̺|t̻|

Another issue is that IPA used to use the Italic alternation of “g” even in the upright design. This restriction was lifted in 1949 as can be seen on page 3 in [iparev].

Even though the normal upright shape is accepted as an alternation, there are linguists who prefer the older (Italic) shape “g” and hence we are making it the default in the stylistic set dedicated for IPA (ss05).

Another such case is with the “a” shape. It has a different visual form in Italics “a” which resembles to a distinct symbol of IPA leading to a wrong transcription. In order to avoid this confusion, we have used the slanted version “a” of “a” in ss05. The other vowel symbol (ie, a (U0251)) is also available in the fonts.

Next we give a real example of using IPA symbols. The quote below is from A course in phonetics, Ladefoged, Peter and Johnson, Keith, (2014), Cengage learning, pp. 285–286, and the StylisticSet=05 has been enabled:

Other examples of this phenomenon have also been mentioned. We saw that before [ŋ], English does not distinguish between tense and lax vowels. Consequently, the vowel that occurs in, for example, sing has a quality between that of [i] and [ɪ]. Similarly, there is no distinction between tense and lax vowels before [ɹ]. The vowel in here in most forms of American English is also intermediate between [i] and [ɪ]. The principle of maximum perceptual separation also accounts for some of the differences between languages. French has two high rounded vowels, [u] as in tout [tu] “all,” and [y] as in tu [ty] “you.”
12 Bold Sans

1m fonts and cmu fonts do not contain a properly made BoldSans. Their BoldSans is a stroke-extension of the Sans with rounded corners. NewCM fixes that and provides a true BoldSans:

<table>
<thead>
<tr>
<th>LM</th>
<th>NewCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ХΞ</td>
<td>ХΞЯДЛ</td>
</tr>
</tbody>
</table>

13 Unicode Math coverage and options

NewCM provides full Unicode math support, that is all Mathematics Unicode Slots presented in http://www.unicode.org/charts/ in both Math weights, Regular and Book. These blocks are:

Mathematical Symbols
- Arrows (uni2190–uni21FF)
- Supplemental Arrows-A (uni27F0–uni27FF)
- Supplemental Arrows-B (uni2900–uni297F)
- Supplemental Arrows-C (uniF800–uniF8FF)
- Additional Arrows (uni2B00–uni2BFF)
- Miscellaneous Symbols and Arrows (uni2B00–uni2BFF)

Mathematical Alphanumeric Symbols
- (uni1D400–uni1D7FF)
- Arabic Mathematical Alphabetic Symbols (uni1EE00–uni1EFF)
- Letterlike Symbols (uni2100–uni214F)

Mathematical Operators
- (uni2200–uni22FF)
- Basic operators: Plus, Factorial (uni0000–uni007F)
- Division, Multiplication (uni0080–uni00FF)
- Supplemental Mathematical Operators (uni2A00–uni2AFF)
- Miscellaneous Mathematical Symbols-A (uni27C0–uni27EF)
- Miscellaneous Mathematical Symbols-B (uni2980–uni29FF)
Floors and Ceilings (uni2308–uni230B)
Invisible Operators (uni2061–uni2064)

Geometric Shapes (uni25A0–25FF)
- Additional Shapes (uni2B00–uni2BFF)
- Box Drawing (uni2500–uni257F)
- Block Elements (uni2580–uni259F)
- Geometric Shapes Extended (u1F780–u1F7FF)

Unfortunately, the `unicode-math` package does not provide commands currently for the hundreds of extra glyphs that have been added in order to fully cover the above Unicode ranges. The user can consult the Unicode charts at the above link and access the required glyph with \char"# where # is the Unicode number of the slot the glyph belongs to.

For example, \char"2BDA will give the Hygeia symbol (uni2BDA) the Rod of Asclepius as shown above (grayed and scaled ×8). The glyph that appeared in TUGboat (see [AT]), being more realistic will be moved to a new font in the future with ornaments.

13.1 Optical sizes for more glyphs

So far the fonts provided optical sizes for 1st and 2nd order exponents for letters. This was not true though for binary operators and some symbols commonly used in mathematics. For example, the \perp symbol (⟂) often appears in 2nd order exponents and then it appeared very thin. Some printers could even hardly print its thin lines. Now, such glyphs plus several binary operators, such as +, −, ±, etc are now provided in optical sizes, so that expressions such as

\[+^{++} \perp^{\perp} \ast \ast \ast \frac{P_F: K}{e^{(x+y)}}, \]

appear on screen and print properly on printers. Zoom or print and compare with latinmodern-math font:

\[+^{++} \perp^{\perp} \ast \ast \ast \frac{P_F: K}{e^{(x+y)}}, \]

13.2 Upright and extensible integrals

The Math fonts (both Regular and Book weights) include upright integrals in the ss02 StylisticSet. Use with

\setmathfont[StylisticSet=2]{NewCMMath-Book.otf}

or

\setmathfont[StylisticSet=2]{NewCMMath-Regular.otf}

or use the upint option of the fontsetup package with

\usepackage[upint, default]{fontsetup}
for the Book weight, or

\usepackage[upint,olddefault]{fontsetup}

for the regular weight.

Moreover, extensible integrals are supported by the fonts but NOT by the Unicode TeX engines. The following code is a trick so that extensible integrals can be constructed using LuaLaTeX. The result is shown at the end of the article. What the code below does, is that it defines the slot uni222B (integral) as a delimiter. And then this is extended as a delimiter with the mechanism that the font provides.

\documentclass{article}
\usepackage[default]{fontsetup}
\begin{document}
\$
\left\begin{pmatrix}
1
2
3
4
5
6
7
8
9
\end{pmatrix}
\right.$
\end{document}

13.3 Additional and alternative characters in Math

The Math fonts provide the character \texttt{\textbackslash varnothing} (⌀), as an alternative to \texttt{\textbackslash emptyset} (a slashed zero), through Character Variant cv01. The \texttt{fontsetup} package provides the option \texttt{\textbackslash varnothing} to easily switch to the alternative character.

It also provides two more symbols that correspond to the commands

\texttt{\textbackslash nrightrightarrows (\u21f3)}

and

\texttt{\textbackslash nleftleftarrows (\u21f2)}

and supported by the \texttt{default} and \texttt{olddefault} options of the \texttt{fontsetup} package. These symbols are not in the Unicode Standard and so they are added in the Private Area of the fonts.

14 The Medieval Latin and Uncial Greek glyph complement
Table 1: NewCMUncial10-Book.otf

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
</table>

Basic Latin

U+0020 - 002F ! "$ # $ % & ' () * + , - . -
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 : ; < = > -
U+0040 - 004F $@ ABC DEF GHIJKL OMNO
U+0050 - 005F PQRS TUVWXYZ - - - - -
U+0060 - 006F - ABCDEFGHIJKLMNOPQRSTUVWXYZ
U+0070 - 007F - PQRS TUVWXYZ - - - - -

Latin-1 Supplement

U+00A0 - 00AF - - - - - - - - - - - - - - -
U+00B0 - 00BF - - - - - - - - - - - - - - -

Greek and Coptic

U+0370 - 037F - - - - - ' , - - - - - - - - -
U+0380 - 038F - - - - ' Α · € H I - O - T (Ω)
U+0390 - 039F ι Α Β Γ Λ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο
U+03A0 - 03AF Π Ρ - C T T Φ X Ψ Ϗ Ι Τ Λ ε Ν ι
U+03B0 - 03BF τ Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο
U+03C0 - 03CF π ρ σ c t t Φ X Ψ ό Ι Τ Ω -

0 1 2 3 4 5 6 7 8 9 A B C D E F

Total number of glyphs in NewCMUncial10-Book.otf: 160

References
