
A MACRO ROUTINE FOR WRITING TEXT

ALONG A PATH IN METAPOST.

SANTIAGO MUELAS

Abstract. In this article we show a general macro written in pure metapost

for putting any text using any font over any path. The routine will be explained

in detail and some graphics will be included for clarifying purposes.

1. Introduction

In one of the steps of the construction of the program METAGRAF, we feel
ourselves obliged to find a method for writing curved text. —Our goal with META-
GRAF is to give TEX/LATEX users a simple and strong tool for graphics inclusion in
text pages.— We knew the very simple way to achieve this using PsTricks, and at a
certain moment we had the temptation to change to this language. Thanks to the
very valuable advice of some important names of the Meta World, we decided to
do it the hard way and we stopped the development of our program to concentrate
in writing a routine general enough to be included as a general macro in MetaPost
packages.
After one month of hard work to find something that could fulfill our desiderata we
think that finally we have it. This something in the form of a quite simple metapost
routine is what will be shown and explained in this paper.

2. Glyph and Boxes

Being our knowledge of Metapost limited —as we think it is for the biggest part
of its users— the first task to achieve was to find the way to measure characters
or, more precisely, glyph and their corresponding boxes. As Metapost is a sibling
of Metafont and knowing the very systematic way used by D. Knuth in his studies
and great creations, we were sure that some way could be found because, in fact,
Metapost uses TEX for translating math text.

We looked for a hint to our problem in Hobby’s User Manual, but although a
last page in it shows a way to recover separate parts of a picture, this was not a
big help for our problem, and the treatment of text in this Manual is extremely
sober. Nevertheless, two well known capabilities of Metapost were going to be the
foundation for the construction of our routine:

• The capability of finding the size of the bounding box of a picture.
• The capability of obtaining a substring from a string.

Date: September 10, 2000.

Key words and phrases. TXP, MetaPost, LATEX, METAGRAF, awk, TEX.

Special thanks are due to Juan J.Arribas, Hans Hagen and Boguslaw Jackowsky.

1

2 SANTIAGO MUELAS

After a few days employed in looking for some miraculous way of achieving our goal,
it was clear that the good way was already found. The only real need was to assure
that the bounding boxes had no margins —truecorners:=1 was o.k.— and that it
was possible to obtain the length of a string —in number of characters— as in the
Manual this point is unclear. After looking at a few routines in the distribution
and having found a couple in which this length is obtained, things became more
and more clear.

3. The big strength of MetaPost

So, the first part of our job was almost finished. We only needed to write and
test it. This first part was to find the glyph one by one and the size of their corre-
sponding boxes. Once done, we will know how to rewrite the string with the glyph
in the exact place, regarding their separation —positioning them in due vertical
point was the third and last part. We will speak about the second part in a few
lines.

Now, lets write the few lines needed to accomplish our first part. The steps will
be:

(1) Convert the string to a picture and read the total length.
(2) Change the string to another without the last character.
(3) Repeat the first step. The difference between both lengths will be the width

of this last character.
(4) Consider that the original string is the second obtained and repeat all the

steps. We will obtain the width of the last glyph before the end.

We see that this is very simple to program as it is a loop. The lines of code will be:

% input s & pi

truecorners:=1; string s,ps; path pi; picture pic, pt;

for i = length s step -1 until 1:

ps:=substring(0,i) of s;

pic:=thelabel(ps, (0,0));

long[i] = 2*(xpart urcorner pic);

endfor;

After this few lines, we will have the distance from the origin of all our glyph
stored in the array long[]. It is necessary a second loop to put every single one in
due place in the path1:

for i = 0 upto (length s) -1:

sp:= substring(i,i+1) of s;

if sp <> ‘‘ ’’:

x:= (long[i] + long[i+1])/2;

pt:= thelabel(sp, (0,0)) shifted x;

1We will speak something more about this second loop later on.

THE MACRO ROUTINE TXP 3

% Here the instruction to draw the glyph <---------

fi;

endfor;

Now, we need to solve the second part of our problem. Our glyph and their
separation is known. We could put them in any place, but if we want to put them
in a certain line —the path— we need to know how to do that. We need to know
the length along the curve to be used and the angle that the curve forms with the
coordinates axis in the different points of placement. It seems quite a hard task,
but we must not forget that now we are dealing with one of the strongest points of
Metapost and all that is needed and already mentioned can be written in just one
line of code2. —Metapost’s math capabilities can be quite impresives.— This line
is the one that correspond to our second loop where we have signaled it and must
be included there. Here is the line:

draw pt shifted (-xpart pt, h) rotated angle direction arctime x

of pi of pi shifted point arctime xpart pt of pi of pi;

It must be said now that the variable h that appears in this code, has not been
yet obtained. This will correspond to the third part of our search and represent
the height to place the glyph.

4. Working with fonts

The moment has arrived in which we have to enter in the third part of our busi-

ness. The one to obtain the detailed knowledge of every glyph. And for this part
we must say that there is little to be done with Metapost, being the discussion
centered in a matter more generic than what we have already seen3.

In this part, our goal was to know as exactly as possible, the size of the glyph’s
boxes to be used in the string to put along a curve. Not only the sizes of the boxes
but also the situation of the baseline in these boxes. After a couple of days looking
for a way to find this data without the need of knowing the specific font used, we
have realized that this is not possible, so we have gone directly to the sources, that
is: the study of fonts. As it does not seem to be a matter closely related with
Metapost, we will not explain in detail the steps done, but we will go directly to
the results obtained and the way the final data are used by TXP. There are some
points that will be useful to note, and we will do.

• There exists two type of files related with fonts and usually we can find them
in any LATEXdistribution. Those are the files related with the geometry of
the boxes and the position of the baseline in them and the files where the
shape of the glyph are established. We are concerned with the first ones.

• The files where all the description needed usually resides are the ones with
the extension *.afm. Unfortunately, this files are not updated and do not

2This line of code has been written by Juan J. Arribas
3For this part of our work we have found an enormous help in the book “TEXUNBOUND”

from Alan Hoenig.

4 SANTIAGO MUELAS

correspond with the precision needed to the real fonts used. The results
obtained were just not perfect.

• Another group of files that can be used are those with extension *.pl. They
contain a lot of information not needed but they have an enormous advan-
tage over the metrics —or *.afm— ones. For understanding the advantage,
lets mention another group of files.

• The files needed by the computer to be able to use a font, are those with
the extension *.tfm4. Those files are not readable. Nevertheless, usually
there is an application found on every distribution of LATEXcalled tftopl
that creates a file *.pl from a file *.tfm.

• Now we can understand the advantage mentioned. Once located the files
with extension *.tfm that are used by the computer, we can obtain the
corresponding *.pl files, that are readable and detailed. Everything needed
by our macro regarding fonts is included in the *.pl files. And we can obtain
these files from the *.tfm actually used for writing. That means that we
can obtain an absolute precision with this system. So, this is the system
adopted by TXP.

The need to create the files is something to be done once for every font. When
they exist, we don’t need to recreate anymore...until the changes of the original
fonts.
In those files TXP will find an array that relates the number of the ASCII char-
acter with the height to place the center of the box of the glyph over the baseline.
Something like: hig[65]:=3.2576, for the letter A. We will explain later on how to
create those files. For the shake of understandability, let’s suposse that we have
already obtained the arrays.

5. Putting everything in Place

We can come back to our routine to arrange all our knowledge and write it in
its totality —for the moment. In the second loop, the one that will put the glyph
in due place, we let a gap and write in it:Here the instructions to draw the glyph.
The method used by TXP is to obtain the ASCII number corresponding to the
character that must be placed. Then, go to the array of data and look at the value
corresponding to this character: the value of the variable h. Once obtained, the
next lines of this loop can be accomplish with no problem. The corrected version
of the second loop will be:

for i = 0 upto (length s) -1:

sp:= substring(i,i+1) of s;

if sp <> ‘‘ ’’:

x:= (long[i] + long[i+1])/2;

pt:= thelabel(sp, (0,0)) shifted (x,0);

for j = 16 upto 244:

if sp = char(j):

k:= j;

fi;

endfor;

4There are also the files related with the shapes of glyph of little interest for us at this moment.

THE MACRO ROUTINE TXP 5

h:=hig[k];

draw pt shifted (-xpart pt, h) rotated angle direction

arctime x of pi of pi shifted point arctime xpart pt of pi of pi;

fi;

endfor;

And the final macro will be the addition of the first loop at the beginning of this
second one, plus some inclusions of a general kind.

Compacting it a little bit and writing the complete routine, we have:

1 def txp(expr s, pat, hig) =

2 picture pt, pic; string sp, ps; path pi; truecorners:= 1;

3 pi:= pat shifted(-xpart center pat, -ypart center pat);

4 for i = length s step -1 until 0:

5 ps:= substring(0,i) of s;

6 pic:= thelabel(ps, (0,0));

7 long[i] = 2*(xpart urcorner pic);

8 endfor;

9 for i=0 upto (length s) - 1:

10 sp:= substring(i,i+1) of s; if sp <> " ":

11 x:= (long[i]+long[i+1])/2;

12 pt:= thelabel(sp, (0,0)) shifted (x,0);

13 for j = 16 upto 244:

14 if sp = char(j): k:=j; fi; endfor;

15 draw pt shifted (-xpart pt, alt[k]) rotated angle

direction arctime x of pi of pi shifted point arctime

xpart pt of pi of pi;

16 fi; endfor;

17 enddef;

--

The program —ej.mp— that will call this macro can be, for example:

--

1 beginfig(10); u=0.25mm; string s; path pat;

2 input fptmbi8r; defaultfont:="ptmbi8r";

3 s="This is a first try with the first & simplest form of Txp";

4 pat:= fullcircle scaled 140 shifted(300u,500u) rotated 180;

5 txp(s,pat,alt); endfig; end

--

A few things must be said to fully understand the listing:

• The file fptmbi8r is the one we have created that contains the font data
needed. More about that, later on.

• This file is an array from value 16 to 244, to stablish the necesary coinci-
dence of ASCII codes.

• The elements in the array are called alt[] and not hig.

6 SANTIAGO MUELAS

• The negative sign that precedes —sometimes— the value xpart is due to
the fact that we are working —sometimes— with the center of the bounding
box and we look for the left corner.

So with the sole exception of not knowing exactly what is the file fptmbi8r
—that is totally independat from the metapost code— we have obtained a first
macro to write text along a curve. In this case, a circle. Let’s look the result of our
small program, using the font Times Italic:

This is a
first try with the first & simples

t f
or

m
of

Tx
p

Figure 1. The first figure created with TXP

The quality of the image can be analised with some kind of zoom for the screen
or in the written paper.

6. The Joy of TxP: Parameters

The first version of TXP just obtained although works correctly is clearly limited
as it is desirable to have more capabilities, for example: scaling the glyph or the
path, being able to begin at any point in the path, placing the glyph over or under
the baseline or in the middle, modifying the separation between the characters and
so on.

We will show the small modifications needed for obtaining this capabilities and
their effect in the final image.

Firstly we will introduce the capability of scaling the glyph. This is the same as
scaling the string written. This is just a matter of simply sending the scale wanted
from the program to the macro as a new parameter. Once received this value as a
new constant that can be called, for example es, it will be needed to modify slightly
some lines of TXP, as shown:

• Line 1 must take acount of the new parameter.
• Line 6 of the macro must be changed from:

6_old pic:= thelabel(ps, (0,0)); to:

6_new pic:= thelabel(ps,(0,0)) scaled es;

• The same with line 12:

12_old pt:= thelabel(sp, (0,0)) shifted (x,0);

12_new pt:= thelabel(sp ,(0,0)) scaled es shifted (x,0);

• And finally the same with line 15:

15_old draw pt shifted (-xpart pt, alt[k]) rotated angle

direction arctime x of pi of pi shifted point arctime

xpart pt of pi of pi;

THE MACRO ROUTINE TXP 7

15_new draw pt shifted (-xpart pt,es}* alt[k])

rotated angle direction arctime x of pi of pi shifted point

arctime xpart pt of pi of pi;

And, also in the program, the call to the macro must include this new parameter.
If we make this changes and repeat the same figure as above but increasing the
scale to a value close to 2, we will obtain:

This isn’t a first try with
th

e
fir

st
&

sim
plestformofTxp.

Figure 2. Scaling the glyph to the double

For scaling the path, only one active line of the macro must be modified, and
this is the line 3. Now it must include the efect of this scaling, and if the factor to
scale is called ef, this line must be written as follows:

3_new pi := pat scaled ef shifted(-xpart center pat*(ef-1),

-ypart center pat*(ef-1));

If this line is changed and the corresponding parameters included, maintaining
the values given for the last figure, and giving a value to the scale of the path equal
to 2, we obtain the figure:

This isn’t a first try with the first & sim
ples

t f
or

m
of

TX
P.

Figure 3. Scaling the path to the double

8 SANTIAGO MUELAS

The changes done are clearly visible and the result obtained the expected one.

In this same way and philosophy it is possible to add many new features to the
macro, but to maintain this paper in a reasonable size we will not continue in this
step by step way of increasing the capabilities. At the end we will write a quite
complete version of TXP and an example that will show the many capabilities
implemented5

7. Closing the fonts discussion

At this stage of this paper, only one point has remained in what could be called
the misterious depth. We are refering to the font data files. A big part of the mistery
has been already explained and we have left for the last part the total knowledge
because as we said before, really is not a metapost affaire.

What TXP needs is the possibility to acces certain data related with the font
geometry. More specifically, the size of the bounding box of every glyph and its
position in relation with the baseline. All those data are included in binary form in
the files *.tfm as we have said. When we transform these files to the format *.pl,
we make readable the content of the .tfm file. So, the file .pl contains all that is
needed by TXP. The only thing that remains for giving the data to TXP is just to
organize and arrange them. But Metapost is not an ideal language for doing that
and a small helping programming language, like AWK is the perfect one. So, we
have written a few lines in awk that we wish to show now. Also will be explained
the way to uses this very short routine.
The routine gentyp.akw that we are going to comment does a simple but funda-
mental job. GENTYP looks at all the lines of the .pl file, read some values from
the lines that begin with the words: CHARACTER, CHARHT and/or CHARDP,
makes a simple calculation and write the result to a helping file called fontdat.
If we have taken as our .pl file the one corresponding to the font “palatino bold
roman”, its name would be pplb8r. Once obtained the file fontdat we would need
to change this name to fpplb8r, and this is the file to serve to TXP. For any other
font, tha way of proceeding would be exactly the same IF the font is of the type
“8”, so up to 255 possible glyph.
Let’s write the listing of this help routine. Here it is gentyp.awk:

--

BEGIN {i=0}

$1 == "(CHARACTER" { letter[i]=$3; i++}

$1 == "(CHARHT" { high[i-1]=10*$3;}

$1 == "(CHARDP" { deph[i-1] = 10*$3 ;}

END{for(j=0;j<229;j++) print "alt["j+15"]:= \

"(high[j]+deph[j])/2-deph[j] > "fontdat";}

--

5We have limited purposely this capabilities to let a reasonable amount of parameters, but it

can be increased with no problem. For example, to add the possibility of scaling the text with

a different horizontal and vertical scale is trivial, and the same is true for the shearing of the

bounding boxes that can furnish an interesting tool for special cases in which it is desired to do

something fantaisiste as, for example, transforming an italic font in a vertical one or the contrary.

THE MACRO ROUTINE TXP 9

Summarizing, what is needed to create the font data file is just to write:

awk − f gentyp.awk pplb8r.pl and then:
mv fontdat fpplb8r

And that’s all. Once done this preparatory work for all the fonts usually em-
ployed by anyone, he has not need to care anymore.6

8. The best at the end

In what follows we will show the final aspect of the txp.mp macro and an example
of aplication with different fonts, scales and colors. We will finish by giving a few
recomendations of practical aspect.

Final Listing Of Macro txp.mp.-

--

def txp(expr s, pat, es, ef, hi, tr, se, lc, th, hig) =

picture pt ,pic; string sp, ps; color loc; path pi;

truecorners:=1;

pi := pat scaled ef shifted(-xpart center pat*(ef-1), \

-ypart center pat*(ef-1));

long[0]:=tr;

for i = length s step -1 until 1:

ps:=substring(0,i) of s;

pic:=thelabel(ps,(0,0)) scaled es;

long[i]:=((2+se)*(xpart urcorner pic) + tr);

endfor;

for i=0 upto (length s) - 1:

sp:= substring(i,i+1) of s;

if sp <> " ":

x:= (long[i]+long[i+1])/2;

pt:= thelabel(sp ,(0,0)) scaled es shifted (x,0);

for j = 16 upto 244:

if sp = char(j): k:=j; fi; endfor;

h:=es*(alt[k] + hi);

draw pt shifted (-xpart pt,h) rotated angle direction \

arctime x of pi of pi shifted point arctime xpart pt of pi \

of pi withcolor lc;

fi; endfor;

if th <> 0:

pickup pencircle scaled th;

draw pi withcolor red;

fi;

enddef;

With this macro, there are practically no limitations to the capability of writing
text strings, as long as wanted —althoug in a single paragraph— using the type

6Included with this paper will be the fondat files of three very important families of fonts:

Times, Palatino and Helvetica. Also we will include the file corresponding to ZapfChancery.

10 SANTIAGO MUELAS

and size of fonts and the shape of the path wanted. It is possible to mix all those
components in a single program as will be shown in the example that follows.

9. An application to finish with

The program that will be shown immediatly gives a quite interesting idea of the
possibilities of TXP. Here is the listing:

--

beginfig(1);

input txp; u=0.25mm; color loc; string s; path a;

es:=1; ef:=1; hy:=0; tt:=0; sep:=0; loc:=black; lin=0;

input fptmbi8r;

defaultfont:="ptmbi8r";

s:="WRITING ON THE PATH IS AMUSING AND EASY...WRITING ON THE PATH \

IS AMUSING AND EASY...WRITING ON THE PATH IS AMUSING AND EASY... \

WRITING ON THE PATH IS AMUSING AND EASY...WRITING ON THE \

PATH IS AMUSING AND EASY...";

a:=(192u,768.0u).. controls (124u,824.0u) and (128u,904.0u).. \

(166u,934.0u).. controls (204u,964.0u) and (268u,944.0u).. \

(320u,886.0u).. controls (372u,828.0u) and (380u,768.0u).. \

(438u,742.0u).. controls (496u,716.0u) and (584u,752.0u).. \

(590u,832.0u).. controls (596u,912.0u) and (548u,952.0u).. \

(504u,974.0u).. controls (460u,996.0u) and (348u,1004.0u).. \

(294u,938.0u).. controls (240u,872.0u) and (260u,776.0u).. \

(330u,732.0u).. controls (400u,688.0u) and (660u,676.0u).. \

(688u,860.0u);

hy:=-3;sep:=0.2;loc:=blue;

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fpzcmi8r;

defaultfont:="pzcmi8r";

s:="YES !!";

a:=(400u,850u)--(500u,850u);

es:=4;hy:=0.;sep:=0.;loc:=red;

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fphvb8r;

defaultfont:="phvb8r";

s:="Although sometimes, it can be cumbersome.";

a:=(600u,1000u)..(425u,1100u)..(250u,1000u);

es:=1.3; sep:=.0; loc:=black;

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fpplbo8r;

defaultfont:="pplbo8r";

s:="But, anyway, I like it !! ...";

a:=(250u,600u)--(600u,600u);

es:=1.8; sep:=0.3;loc:=green;

THE MACRO ROUTINE TXP 11

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fphvb8r;

defaultfont:="phvb8r";

s:=":-)";

a:=(400u,500u)--(400u,400u);

es:=4;hy:=0.;sep:=0.;loc:=red;

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fphvr8r;

defaultfont:="phvr8r";

s:="O";

a:=(355u,500u)--(390u,500u);

es:=11;hy:=-5.4;sep:=0.;loc:=blue;

txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

endfig; end

--

And here —in the next page— is the result of running it:

We will finish with a mention to the meaning of the parameters used in the
general macro, although, as we have already said, this is just a limited version.

Parameter and meaning.-

s ---> String to write;

a ---> Path to write to;

es ---> Scale used for the fonts. (Default: 1; No scaled)

ef ---> Scale used for the path. (Default: 1; No scaled)

hy ---> Vertical placement over the path.

(Default: 0; The path is the baseline)

tt ---> Distance between the beginning of the written

string and the beginning of the path. (Default: 0)

sep---> Extra separation between the glyph. (Default: 0)

loc---> Color to use for each string. (Default: black)

lin---> Thickness used to draw the path. (Default: 0: No draw)

NOTE: For using Computer Modern fonts of type “7”, some small arrangements
must be made. Once understood this paper, it is a very simple matter. If in doubt,
visit the Web Page at:

http://w3.mecanica.upm.es/metapost

or contact me directly by email to the address shown.
———————————————————

Departamento de Mecanica, E.T.S. de Ingenieros de Caminos C. y P. (U.P.M.), Ciudad
Universitaria. Madrid 28040

E-mail address: smuelas@mecanica.upm.es

URL: http://w3.mecanica.upm.es/~smuelas

12 SANTIAGO MUELAS

WRIT
IN

G
O

N
T

H
E

PA
TH

IS
AMUSING AND EASY...W

RITIN
G

O
N

TH
E

PATH
IS AMUSING AND EASY...

W
R

IT
IN

G
O

N
T

H
E

PATH
IS

AMUSINGANDEASY...WRITING

ON
T

H
E

P
A

T
H

IS
A

M
U

SING
AND EASY...WRITING ON THE PATH IS AMUSIN

G

AND
E

A
SY

...

YES !!

Al
th

ou
ghsometimes,itcanbecumbersome.

But, anyway, I like it !! ...

:-)O
Figure 4. The last figure of this paper

