low level

1EX

debugging

Contents

1 Introduction 1
2 Token lists 1
3 Node lists 4
4 Visual debugging 5
5 Math 7
§) Fonts 9
7 Overflow 10
8 Side floats 11
9 Struts 12
10 Features 12
11 Profiling 14
12 Par builder 14
13 More 16

1 Introduction

Below there will be some examples of how you can see what TgX is doing. We start with
some verbose logging but then move on to the more visual features. We occasionally
point to some features present in the LuaMetaTgX engine. More details about what
is possible can be found in documents in the ConIgXt distribution, for instance the
‘lowlevel’ manuals.

Typesetting involves par building, page building, inserts (footnotes, floats), vertical ad-
justers (stuff before and after the current line), marks (used for running headers and
footers), alignments (to build tables), math, local boxes (left and right of lines), hyphen-
ation, font handling, and more and each has its own specific ways of tracing, either
provided by the engine, or by ConTgXt itself. You can run context --trackers to get
a list of what ConTgXt can do, as it lists most of them. But we start with the language,
where tokens play an important role.

2 Token lists

There are two main types of linked lists in TgX: token lists and node lists. Token lists
relate to the language and node lists collect (to be) typeset content and are used for
several stack based structures. Both are efficiently memory managed by the engine.
Token lists have only forward links, but node lists link in both directions, at least in
LuaTgX and LuaMetaTgX.

Introduction

When you define a macro, like the following, you get a token list:
\def\test#1{\bgroup\bf#1\egroup}

Internally the \test macro has carry the argument part and the body, and each is en-
coded as a number plus a pointer to the next token.

control sequence: test

586923 19 49 match argument 1
97602 20 0 end match

591826 1 123 left brace bgroup
478610 143 0 protected call bf

586987 21 1 parameter reference

377383 2 125 right brace egroup

Here the first (large) number is a memory location that holds two 4 byte integers per
token: the so called info part codes the command and sub command, the two smaller
numbers in the table, and a link part that points to the next memory location, here
the nest row. The last columns provide details. A character like ‘a’ is one token, but
a control sequence like \foo is also one token because every control sequence gets a
number. So, both take eight bytes of memory which is why a format file can become
large and memory consumption grows the more macros you use.

In the body of the above \test macro we used \bf so let's see how that looks:

permanent protected control sequence: bf

628 137 24 iftest ifmmode
629 131 O expand after expandafter
630 143 0 protected call mathbf

631 137 3 iftest else

632 131 0 expand after expandafter
633 143 0 protected call normalbf
634 137 2 iftest fi

Here the numbers are much lower which is an indication that they are likely in the
format. They are also ordered, which is a side effect of LuaMetaTgX making sure that
the token lists stored in the format file keep their tokens close together in memory which
could potentially be a bit faster. But, when we are in a production run, the tokens come
from the pool of freed or additionally allocated tokens:

\tolerant\permanent\protected\def\test [#1]#:#2%

Token lists

{{\iftok{#1}{sl}\bs\else\bf\fi#2}}

Gives us:

permanent tolerant protected control sequence: test

71064 12 91 other char [U+0005B
249906 19 49 match argument 1
611915 12 93 otherchar] U+0005D
332190 19 58 match argument :
611889 19 50 match argument 2

332233 20 0 end match
332180 1 123 left brace

611794 137 29 iftest iftok
478572 1 123 left brace
97569 21 1 parameter reference

478594 2 125 right brace
332217 1 123 left brace

71011 11 115 letter s U+00073
611847 11 108 letter 1 U+0006C
332221 2 125 right brace

611829 143 0 protected call bs
332218 137 3 if test else
611787 143 0 protected call bf
332216 137 2 if test fi
332226 21 2 parameter reference

611739 2 125 right brace

If you are familiar with TEX and spend some time looking at this you will start recogniz-
ing entries. Forinstance 11 115 translates to letter s because 11 isthe so called com-
mand code of letters (also its \catcode) and the s has utf8 value 115. The LuaMetaTgX
specific \iftok conditional has command code 135 and sub code 29. Internally these
are called cmd and chr codes because in many cases it's characters that are the sub
commands.

There is more to tell about these commands and the way macros are defined, for in-
stance tolerant here means that we can omit the the first argument (between brack-
ets) in which case we pick up after the #:. With protected we indicate that the macro
will not expand in for instance an \edef and permanent marks the macro as one that
a user cannot redefine (assuming that overload protection is enabled). The extended
macro argument parsing features and macro overload protection are something specific
to LuaMetaTgX.

Token lists

These introspective tables can be generated with:
\luatokentable\test

after loading the module system-tokens. The reason for having a module and not a
built-in tracer is that users seldom want to do this. Instead they might use \showlua-
tokens\test that just reports something similar to the console and/or log file.

There is much more to tell but most users have no need to look into these details unless
they are curious about what TgX does. In that case using tracingall and inspecting
the log file can be revealing too, but be prepared for huge files. In LuaMetaTgX we
have tried to improve these traces a bit but that's of course subjective and even then
logs can become huge. But even if one doesn't understand all that is shown, it gives an
impression about how much work TgX is actually doing.

3 Node lists

A node list is what you get from input that is (to be) typeset. There are several ways to
see what node lists are produced but these are all very verbose. Take for instance:

\setbox\scratchbox\hbox{test \bf test}

\showboxhere\scratchbox

This gives us:

\hlist[box][color=1,colormodel=1,mathintervals=1], width 47.8457pt, height 7.48193pt, depth
0.15576pt, direction 121, state 1
Alist
.\glyph[unset][color=1,colormodel=1], protected, wd 4.42041pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0074
.\glyph[unset][color=1,colormodel=1], protected, wd 6.50977pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0065
.\glyph[unset][color=1,colormodel=1], protected, wd 5.64502pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0073
.\glyph[unset][color=1,colormodel=1], protected, wd 4.42041pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <1: DejaVuSerif @ 11.0pt>, glyph U+0074
.\glue[spaceskip][color=1,colormodel=1] 3.49658pt plus 1.74829pt minus 1.16553pt, font 1
.\glyph[unset][color=1,colormodel=1], protected, wd 5.08105pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0074
.\glyph[unset][color=1,colormodel=1], protected, wd 6.99854pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0065

Node lists

.\glyph[unset][color=1,colormodel=1], protected, wd 6.19287pt, ht 5.86523pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0073

.\glyph[unset][color=1,colormodel=1], protected, wd 5.08105pt, ht 7.48193pt, dp 0.15576pt, language
(n=1,1=2,r=3), hyphenationmode "79F3F, options "80, font <10: DejaVuSerif-Bold @ 11.0pt>, glyph
U+0074

The periods indicate the nesting level and the slash in front of the initial field is mostly a
historic curiosity because there are no \hlist and \glue primitives, but actually there
is in LuaMetaTEgX a \glyph primitive but that one definitely doesn't want the shown
arguments.

That said, here we have a horizontal list where the list field points to a glyph that it-
self points to a next one. The space became a glue node. In LuaTgX and even more in
LuaMetaTgX all nodes have or get a subtype assigned that indicates what we're dealing
with. This is shown between the first pair of brackets. Then there are attributes, be-
tween the second pair of brackets, which actually is a also a (sparse) linked list. Here
we have two attributes set, the color, where the number points to some stored color
specification, and the (here somewhat redundant) color space. The names of these at-
tributes are macro package dependent because attributes are just a combination of a
number and value. The engine itself doesn't do anything with them; it is the Lua code
you plug in that can do something useful based on the values.

It will be clear that watching a complete page, with many nested boxes, rules, glyphs,
discretionaries, glues, kerns, penalties, boundaries etc quickly becomes a challenge
which is why we have other means to see what we get so let's move on to that now.

4 Visual debugging

In the early days of ConTgXt, in the mid 90's of the previous century, one of the first
presentations at an ntg meeting was about visual debugging. This feature was achieved
by overloading the primitives that make boxes, add glue, inject penalties and kerns, etc.
It actually worked quite well, although in some cases, for instance where boxes have to
be unboxed, one has to disable it. I remember some puzzlement among the audience
about the fact that indeed these primitives could be overloaded without too many side
effects. It will be no surprise that this feature has been carried on to later versions,
and in ConTgXt MKIV it was implemented in a different (less intrusive) way and it got
gradually extended.

\showmakeup \hbox{test \bf test}

This gives us a framed horizontal box, with some text and a space glue:

Visual debugging

test:test

Of course not all information is well visible simply because it can be overlayed by what
follows, but one gets the idea. Also, when you have a layer capable pdf viewer you can
turn on and off categories, so you can decide to only show glue. You can also do that
immediately, with \showmakeup[glue].

There is a lot of granularity: hbox, vbox, vtop, kern, glue, penalty, fontkern, strut,
whatsit, glyph, simple, simplehbox, simplevbox, simplevtop, user, math, italic,
origin, discretionary, expansion, line, space, depth, marginkern, mathkern, dir,
par, mathglue, mark, insert, boundary, the more selective vkern, hkern, vglue, hglue,
vpenalty and hpenalty, as well as some presets like boxes, makeup and all.

When we have:
\showmakeup \framed[align=normal]{\samplefile{ward}}

we get:

E@Jegﬁarthﬂa«cnamhahitatpforpamimalp]qife is-in.old.age.and-has.asfatal.illness...Several,.inj.u

:0:660

J
«fact..lt.would.be-happening.whether.humans.had.ever.evolved.or.not..But.our.presencey.«

000

diselike.the.effect.of.an.old-age.patient.who.smokes.many.packs.of.cigarettes.per.daymm:«

:0.000

@%@mwemhumansyareﬂlzhemmgar,,e,tt,es,.m e

And that is why exploring this with a layers enabled pdf viewer can be of help. Alterna-
tively a more selective use of \showmakup makes sense, like

\showmakeup[line,space] \framed[align=normal]{\samplefile{ward}}

Here we only see lines, regular spaces and spaces that are determined by the space
factor that is driven by punctuation.

jl“heﬂEar,th,sy,as,sg,ay,habitaty,forﬂ,animalﬂlife,Sﬂisﬂinﬂ,oldsy,ag,eﬁandﬁhassy,asgfat,alyilln,es,s,L,sg,S,eyer,al,inﬂ
Jfact.:[t:-would:be:happening-whether:humans.had.ever:.evolved.or:not.sBut.our.presence
Jisslikesthe-effect.ofzansold-age-patients-who.smokes.many.packs.of.cigarettessper-day—
Lland&,wesghumansy,ar,eﬂthesgcigar,ettes ,,, ‘

We can typeset the previous example with these settings:

\leftskip 2cm
\rightskip 3cm
\hangindent lcm

Visual debugging

0.
L5:56.9

L:0.0fL
£5:56. 988

LH:28.

LH:28.

LH:28.

\hangafter 2

\parfillrightskip 1lcm

\parfillleftskip 1cm % new

\parinitrightskip 1cm % new

\parinitleftskip 1lcm % new

\parindent 2cm % different

This time we get:

E . &he.Harth,.as.ashabitat.for.animal.life,.is.in.oldsage ..
o and:-has.asfatal.illness..Several,.in.fact..lf-would:be:happening_

R whether:humans.had.ever.evolved.or.not...But.our.pres-__...

JFM,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,enceﬂ_jﬂsmhkem;th,e,s,,_ﬁff,ec,tse_mﬁg,annﬂmmages@atientsywhoﬂ_mno,ke,sﬁ,ﬁ ,,

[many.packs.of.¢cigarettes.per.daysmand.we.humans.are___

th e cigarettes.m=

Looking at this kind of output only makes sense on screen where you can zoom in but
what we want to demonstrate here is that in LuaMetaTgX we have not only a bit more
control over the paragraph (indicated by comments) but also that we always have the
related glue present. The reason is that we then have a more predictable packaged line
when we look at one from the Lua end. Where TgX normally moves the final line content
left or right via either glue or the shifts property of a box, here we always use the glue.
We call this normalization. Keep in mind that TEX was not designed (implemented) with
exposing its internals in mind, but for LuaTgX and LuaMetaTEX we have to take care of
that.

Another characteristic is that the paragraph stores these (and many more) properties
in the so called initial par node so that they work well in situations where grouping
would interfere with our objectives. As with all extensions, these are things that can be
configured in detail but they are enabled in ConTgXt by default.

5 Math

Math is a good example where this kind of tracing helps development. Here is an ex-
ample:

\im { \showmakeup y = \sqrt {2x + 4} }

Scaled up we get:

Math

i
llﬁ
T SOLY| IMZEAAAL
0 [varrel [|re Varbim [pindig MP:(

Instead of showing everything we can again be more selective:

\im {
\showmakeup[mathglue,glyph]
y = \sqrt {2x + 4}

}

Here we not only limit ourselves to math glue, but also enable showing the bounding

boxes of glyphs.
y varrel rellg varbin [bindig

This example also shows that in LuaMetaTEX we have more classes than in a traditional
TEX engine. For instance, radicals have their own class as do digits. The radical class is
an engine one, the digit class is a user defined class. You can set up the spacing between
each class depending on the style. For the record: this is just one of the many extensions
to the math engine and when extensions are being developed it helps to have this kind of
tracing. Take for instance the next example, where we have multiple indexes (indicated
by) on a nucleus, that get separated by a little so called continuation spacing.

\im {
\showmakeup[mathglue,glyph]
y = \sqrt {x 1 a {\darkred +} x 1 b}

varE relArJ X 1 'fagu‘ ar:iln- bié 1 IQt

Here the variable class is used for alphabetic characters and some more, contrary to
the more traditional (often engine assigned) ordinary class that is now used for the
left-overs.

Math

6 Fonts

Some of the mentioned tracing has shortcuts, for instance \showglyphs. Here we show
the same sample paragraph as before:

\showglyphs
\showfontkerns
\framed[align=normal]{\samplefile{ward}}

Here is the upper left corner of the result:

The Earth, as a habit:

What font kerns we get depends on the font, here we use pagella:

The Earth; as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

If we zoom in the kerns are more visible:

-0.165

The Eartﬁi as a habitat for animal

0.165

happening whether humans had

-0.110 -0.385 0.110

patient who smokes many packs

And here is another one:

\showfontexpansion
\framed[align={normal,hz}]{\samplefile{ward}}

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

Fonts

10

or blown up:

The Earth, as a habitat for animal

-20 -14 -14 -14 -14-20-20-14 - -14 -14 -20-14 -20 -14 -14 -2614 -14-20

happening Whethe1; umans had

-14 -14 14-14 -1314 -14 14 -14-1914 -14 -14 1 -14 -14-14 -14 -14 -14 -14

patient who smokes many packs

D
&
P
-
o~
O

The last line (normally) doesn't need expansion, unless we want it to compatible with
preceding lines, space-wise. So when we do this:

\showfontexpansion
\framed[align={normal,hz,fit}]{\samplefile{ward}}

the fit directives results in somewhat different results:

The Earth, as a habitat for animal

-20 -14 14 -14 14 -20-20-14 20 14 14 -14 -14 -14 -14 -2626-14 -20 -20-14 -20 -14 -14 -2614 -14-20

happening whether humans had .

-14 -14 14-14 -1314 -14 14 -14-1914 -14-19 -14 14 -14 -14-14 -14 14 -14 -14

patient who smokes many packs

22 22 22 22 22 22 22 22 2 22 222 2

As with other visual tracers you can get some insight in how TgX turns your input into
a typeset result.

7 Overflow

By default the engine is a bit stressed to make paragraphs fit well. This means that we
can get overflowing lines. Because there is a threshold only visible overflow is reported.
If you want a visual clue, you can do this:

\enabletrackers[builders.hpack.overflow]

With:

Overflow

11

\ruledvbox{\hsize 3cm test test test test test test test test}

We get:

test test test tdst
test test test tdst

The red bar indicates a potential problem. We can also get an underflow, as demon-
strated here:

\ruledvbox {

\setupalign[verytolerant,stretch]

\hsize 3cm test test test test test test test test
}

Now we get a blue bar that indicates that we have a bit more stretch than is considered
optimal:

test test test
test test test]
test test

Especially in automated flows it makes sense to increase the tolerance and permit
stretch. Only when the strict attempt fails that will kick in.

8 Side floats

Some mechanisms are way more complex than a user might expect from the result. An
example is the placement of float and especially side floats.

,,,,,,N,o,t,,,only,,dQ,,we,,have,,1:0,,make,,s,ur,,e,,,that,,the,,sp,a,cin,g,,b,efore,,suc,h,,a,,ﬂnaﬁ
r is as good and consistent as possible, we also need the progression to
ﬁ \ work out well, that is: the number of lines that we need to indent.

For that we need to estimate the space needed, look at the amount
of space before and after the float, check if it will fit and move to the
next page if needed. That all involves dealing with interline spacing,
interparagraph spacing, spacing at the top of a page, permitted slack
at the bottom of page, the depth of the preceding lines, and so on. The tracer shows
some of the corrections involved but leave it to the user to imagine what it relates to;
the previous sentence gives some clues. This tracker is enables with:

\enabletrackers[floats.anchoring]

Side floats

12

9 Struts

We now come to one of the most important trackers, \showstruts, and a few examples
shows why:

|test IteStI ‘ Itest Fes]
width=.2tw height=1cm offset=0pt offset=overlay

Here in all cases we've set the width to 20 percent of the text width (tw is an example
of a plugged in dimension). In many places ConTgXt adds struts in order to enforce
proper spacing so when spacing is not what you expect, enabling this tracker can help
you figure out why.

10 Features

Compared to the time when TgX showed up the current fonts are more complicated,
especially because features go beyond only ligaturing and kerning. But even ligaturing
can be different, because some fonts use kerning and replacement instead of a new
character. Pagella uses a multiple to single replacement:

font 17: texgyrepagella-regular.otf @ 10.0pt

features [basic: kern=yes, liga=yes, mark=yes, mkmk=yes, script=dflt]
[extra: analyze=yes, autolanguage=position, autoscript=position,
checkautoeffect=yes, checkmarks=yes, checkmissing=yes,
compoundhyphen=yes, curs=yes, devanagari=yes, dummies=yes,
expansion=quality, extensions=yes, extrafeatures=yes,
extraprivates=yes, fixdot=yes, indic=auto, itlc=yes,
mathrules=yes, mode=node, spacekern=yes,
textcontrol=collapsehyphens, replaceapostrophe, visualspace=yes,
wipemath=yes]

step1 effe fietsen U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [glue] U+66:f
U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

feature 'liga', type 'gsub ligature', lookup 's s 9', replacing
U+66 (f) upto U+66 (f) by ligature U+FBOO (f f) case 2

step 2 U+65:e [pre: U+66:f U+2D:- post: U+66:F replace:
U+FBOO:ff] U+65:e [glue] U+66:f U+69:i U+65:e U+74:t [pre: U+2D:-]
U+73:s U+65:e U+6E:n

Struts

13

feature 'liga', type 'gsub ligature', lookup 's s 10°',
replacing U+66 (f) upto U+69 (i) by ligature U+FBO1 (f i)
case 2

step 3 U+65:e [pre: U+66:f U+2D:- post: U+66:Ff replace:
U+FBOO:ff] U+65:e [glue] U+FBO1:fi U+65:e U+74:t [pre: U+2D:-]
U+73:s U+65:e U+6E:n

feature 'kern', type 'gpos pair', lookup 'p s 0', inserting
move -0.14992pt between U+66 (f) and U+65 (e) as
postinjections

result U+65:e [pre: U+66:f U+2D:- post: U+66:f [kern] replace:
U+FBOO:ff] U+65:e [glue] U+FBO1:fi U+65:e U+74:t [pre: U+2D:-]
U+73:s U+65:e U+6E:n

Not all features listed here are provided by the font (only the four character ones)
because we're using TgX which, it being TgX, means that we have plenty more ways to
mess around with additional features: it's all about detailed control. But what you see
here are the steps taken: the font handler loops over the list of glyphs and here we see
the intermediate results when something has changed. There can be way more loops
that in this simple case.

With Cambria we get a single replacement combined with kerning:
font 19: cambria.ttc @ 10.0pt

features [basic: kern=yes, liga=yes, mark=yes, mkmk=yes, script=latn]
[extra: analyze=yes, autolanguage=position, autoscript=position,
checkautoeffect=yes, checkmarks=yes, checkmissing=yes,
compoundhyphen=yes, curs=yes, devanagari=yes, dummies=yes,
expansion=quality, extensions=yes, extrafeatures=yes,
extraprivates=yes, fixdot=yes, indic=auto, itlc=yes,
mathrules=yes, mode=node, spacekern=yes,
textcontrol=collapsehyphens, replaceapostrophe, visualspace=yes,
wipemath=yes]

step 1 effe fietsen U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [glue] U+66:f
U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

feature 'liga', type 'gsub _contextchain', chain lookup
's s 38', replacing single U+66 by U+F016C

step 2 effe fietsen U+65:e U+66:f [pre: U+2D:-] U+66:f U+65:e [glue]
U+F016C:f U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

Features

14

feature 'kern', type 'gpos pair', merged lookup 'p s 0',
inserting move -0.12207pt between U+66 and U+65 as injections

result effe fietsen U+65:e U+66:f [pre: U+2D:-] U+66:f [kern] U+65:e [glue]
U+FO016C:f U+69:i U+65:e U+74:t [pre: U+2D:-] U+73:s U+65:e U+6E:n

One complication is that hyphenation kicks in which means that whatever we do has to
take the pre, post and replacement bits into account combined which what comes before
and after. Especially for complex scripts this tracker can be illustrative but even then
only for those who like to see what fonts do and/or when they add additional features
runtime.

11 Profiling

There are some features in ConTEXt that are nice but only useful in some situations. An
example is profiling. It is something you will not turn on by default, if only because of
the overhead it brings. The next two paragraphs (using Pagella) show the effect.

he command \binomn is the standard notation for binomial coefficients an
is preferred over \choose, which is an older macro that has limited compat-

.ibility with newer packages and font encodings: |A| = (ZZ)Z Additionally,
.\binom uses proper spacing and size for the binomial symbol. In conclusion
.it is recommended to use \binom instead of \choose in TgX for typesetting
.binomial coefficients for better compatibility and uniform appearance. \

The previous paragraph is what comes out by default, while the next one used these
settings plus an additional \enabletrackers[profiling.lines.show].

he command \binom is the standard notation for binomial coefficients an:
_is preferred over \choose, which is an older macro that has limited compat-

2
.ibility with newer packages and font encodings: |A| = (]Z) Additionally,

.\binom uses proper spacing and size for the binomial symbol. In conclusion
.it is recommended to use \binom instead of \choose in TgX for typesetting
.binomial coefficients for better compatibility and uniform appearance. \

This feature will bring lines together when there is no clash and is mostly of use when
a lot of inline math is used. However, when this variant of profiling (we have an older
one too) is enabled on a 300 page math book with thousands of formulas, only in a
few places it demonstrated effect; it was hardly needed anyway. So, sometimes tracing
shows what makes sense or not.

12 Par builder

Here is is a sample paragraph from Knuths “Digital Typography”:

Profiling

15

15. (This procedure maintains four integers (A, B, C, D) with the invariant meaning]
that “our remaining job is to output the continued fraction for (Ay + B)/(Cy + D),
where| y| is| the input yet to come.”) Initially set j « k < 0, (A, B, C, D) « (a, b, c, d)j
then input| x;/ and set (A, B, C, D) « (Ax;+ B, A,Cx;j+ D, C), j < j+ 1, one or more|
times|untill C +|D| has the same sign as C. (When j > 1 and the input has not terminated,|
we|knowithat|1 <|y < «; and when C + D has the same sign as C we know therefore|that
(Ay +|B)/(Cy +| D) lies between (A + B)/(C + D) and A/C.) Now comes the genera]|
step; If ng integeri lies strictly between (A + B)/(C + D) and A/C, output X, <[|A/C],
and|set (A, B, C, D) «|(C, D, A - XxC, B — XyD), k « k + 1; otherwise input x; and|
set| (A, B, C, D) « (Ax;j+/B, A,Cx;j+ D, C), j « j+ 1. The general step is repeated|
ad infinitum. However| if at| any| time the final x; is input, the algorithm immediately]
switches gears: It outputs|the|continued fraction for (Ax;+ B)/(Cx + D), using Euclid's|
algorithm, and terminates.

There are indicators with tiny numbers that indicate the possible breakpoints and we
can see what the verdict is:

12 1 0 10 400 decent glue 1 26 19 28 259433 tight penalty 1 51 47 99 9640 decent glue
3 2 0 70 6400 tight glue 6 2 27 21 73 7943 decent glue 52 48 13 9545 loose glue
22 3 1 69 6641 loose glue 28 23 0 12610 decent glue 53 47 13 9416 decent glue
4 2 5 29125 decent glue 229 21 O 8647 tight glue 54 49 59 2729967 loose glue
5 1 5 28084 tight glue 30 25 39 1113011 loose penalty 2 55 49 12 2725690 decent glue
3 6 2 0 6500 decent math 2 31 24 39 1112825 decent penalty 2 56 49 0 2725306 decent glue
1 7 2 41 9001 tight glue 1 32 26 3 1362102 decent penalty 57 49 66 2730982 tight glue
3 2 8 3 2 6785 decent glue 7 1 33 27 95 18968 loose glue 11 1 58 51 8 9964 decent glue
1 9 6 67 12429 loose glue 1 34 29 3 8816 decent glue 59 56 55 2729531 loose glue
10 3 67 18490 tight glue 35 27 3 10647 tight glue 60 55 55 2725811 decent glue
11 6 4 29100 decent glue 2 36 29 15 18251 tight glue 61 56 71 2725406 decent glue
112 7 0 9101 decent math 37 31 0 1112925 decent glue 62 55 71 2733971 tight glue
2 13 6 0 7589 tight math 38 31 32 1114589 tight glue 12 63 58 61 15005 tight glue
4 1 14 8 1 6906 decent glue 1 39 32 0 1362202 decent glue
1 15 9 90 12529 decent glue 8 2 40 33 1 269089 decent penalty 59 564944393226191362
1 16 8 90 12410 tight glue 2 41 34 0 8916 decent glue 60 554944393226191362
2 17 12 22 10125 loose glue 42 36 41 18395 decent glue 61 564944393226191362
18 13 0 497689 decent penalty 43 36 25 18980 tight glue 62 554944393226191362
2 19 13 10 7989 decent math 1 44 39 92 1622606 tight penalty 63 5851474134292114831
5 20 15 22 13553 loose glue 9 1 45 40 8 291913 decent glue
2 21 14 22 7747 tight glue 46 40 0 269189 decent math pass : 1 demerits : 15105
22 17 64 15601 loose glue 2 47 41 10 9316 decent glue subpass : P looseness : 0
1 23 16 64 12510 decent glue 1 48 41 20 9016 decent glue subpasses : 0
1 24 17 20 10225 decent glue 4 49 44 0 2725206 decent penalty
1 25 19 1 8110 decent glue 10 50 45 41 294514 loose glue

The last lines in the last column show the route that the result takes. Without going
into details, here is what we did:

\startshowbreakpoints
\samplefile{math-knuth-dt}
\stopshowbreakpoints

\showbreakpoints

Par builder

16

This kind of tracing is part of a mechanism that makes it possible to influence the choice
by choosing a specific preferred breakpoint but that is something the average user is
unlikely to do. The main reason why we have this kind of trackers is that when de-
veloping the new multi-step par builder feature we wanted to see what exactly it did
influence. That mechanism uses an LuaMetaTgX feature where we can plug in addi-
tional passes using the \parpasses primitive that can add different strategies that are
tried until criteria for over- and underfull thresholds and/or badness are met. Each step
can set the relevant parameters differently, including expansion, which actually makes
for more efficient output and better runtime when that features is not needed to get
better results.

13 More

There are many more visual trackers, for instance layout.vz for when you enabled ver-
tical expansion, typesetters.suspects for identifying possible issues in the input like
invisible spaces. Trackers like nodes.destinations and nodes.references will show
the areas used by these mechanisms. There are also trackers for positions, (cjk and
other), script handling, rubies, tagging, italic correction, breakpoints and so on. The
examples in the previous sections illustrate what to expect and when to use a specific
mechanism knowing this might trigger you to check if a tracker exists. Often the test
suite has examples of usage.

13 Colofon

Author Hans Hagen

ConTgXt 2025.02.12 08:44

LuaMetaTgX 2.11.06|20250210

Support www.pragma-ade.com
contextgarden.net
ntg-context@ntg.nl

More

