
The delimset Package

Niklas Beisert

Institut für Theoretische Physik
Eidgenössische Technische Hochschule Zürich

Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

nbeisert@itp.phys.ethz.ch

17 July 2024, v2.0

Abstract

delimset is a LATEX2ε package to typeset and declare sets of delimiters in math mode
whose size can be adjusted conveniently.

Contents

1 Introduction 1
1.1 Delimiter Sizes for Math Styles . 3
1.2 Spacing and Math Classes . 3
1.3 Compounds and Broken Lines . 4
1.4 Philosophy . 5
1.5 Related CTAN Packages . 5

2 Usage 6
2.1 Delimiter Sets and Presentation Flags . 6
2.2 Inline Declarations . 8
2.3 Declarations . 9
2.4 Default Declarations . 10
2.5 Auxiliary Commands . 11
2.6 Package Options . 11

3 Information 12
3.1 Copyright . 12
3.2 Files and Installation . 12
3.3 Interaction with CTAN Packages . 12
3.4 Revision History . 13

A Sample File 13

B Implementation 16

1 Introduction

In ordinary TEX and LATEX, delimiters in math and physics expressions (brackets such as
parentheses, braces, but also absolute values, sets, pairings, bra-kets and quantum expecta-

1

mailto:nbeisert@itp.phys.ethz.ch

tion values, commutators, . . .) are typically coded by their respective symbols. For example:

[(ax+b)x+c] → [(ax+ b)x+ c]

\{1,2,3,\ldots\} → {1, 2, 3, . . .}
(v,w) → (v, w)

\langle\psi|M|\psi\rangle → ⟨ψ|M |ψ⟩
(x^2+px+q)|_{-p/2} → (x2 + px+ q)|−p/2

. . .

In order to adjust the size of delimiters, the modifiers \big, \Big, \bigg, \Bigg are used.
More importantly the construct \left* . . . [\middle*] . . . \right* adjusts the size of delim-
iters to the contents: [[[[

[∗]
]]]]

,

{
p

q

∣∣∣∣p, q ∈ Z, q ̸= 0

}
These modifiers allow to construct expressions involving delimiters conveniently and with a
large amount of flexibility.

However, once an expression has been typeset in this way, it takes some efforts to modify, if
needed. At least, one has to take care of both delimiters at the same time and change their
size or type accordingly. For example, X̂ in the expression (A\hat{X}+B) has an extended
height that calls for bigger delimiters. Ideally, one would use \left(...\right) to find the
correct size. Unfortunately, in this case, the smallest size of delimiters that covers the height
of X̂ is equivalent to \Big, which feels somewhat too big. For aesthetic reasons one might
thus prefer the size \big(...\big):

(A\hat{X}+B) → (AX̂ +B)

\left(A\hat{X}+B\right) →
(
AX̂ +B

)
\Big(A\hat{X}+B\Big) →

(
AX̂ +B

)
\big(A\hat{X}+B\big) →

(
AX̂ +B

)
The package delimset provides mechanisms to declare sets of delimiters whose size can be
adjusted conveniently by adding simple flag parameters. For example, it provides a general
purpose bracket \brk which can be used as follows:

\brk{A\hat{X}+B} → (AX̂ +B)

\brk*{A\hat{X}+B} →
(
AX̂ +B

)
\brk^2{A\hat{X}+B} →

(
AX̂ +B

)
\brk!{A\hat{X}+B} →

(
AX̂ +B

)
It also allows to change the type of bracket conveniently:

\brk{ax+b} → (ax+ b)

\brk[s]{ax+b} → [ax+ b]

\brk[c]{ax+b} → {ax+ b}
\brk[a]{ax+b} → ⟨ax+ b⟩

These features can be combined and used, e.g., in nested brackets in order to distinguish
the levels by shape and size:

\brk[s]!{\brk{ax+b}x+c} →
[
(ax+ b)x+ c

]
2

All of this can of course be achieved with the conventional tools of TEX with comparable
effort, but the more complicated and nested the expressions get, the more difficult it will be
to adjust them to obtain a visually acceptable result.

The main functionality of the package is based on a versatile mechanism to specify sets of
delimiters, e.g.:

\delim<>{ax+b} → ⟨ax+ b⟩
\delimpair[{*,}[!{a}{b} →

[
a, b

[
\delimtriple<||>*{\psi}{A^\dagger}{\psi} →

〈
ψ
∣∣A†∣∣ψ〉

The command \delim can be used on the fly, but also in definitions of custom delimiter sets
such as:

\newcommand{\comm}{\delimpair{[}{*,}{]}}

Note that the definition of \comm does not specify any arguments. They are nevertheless
read by the incomplete definition of \delimpair from what follows \comm. In particular,
this incomplete definition enables the correct parsing of the optional size specifier flag, e.g.:

\comm!{P}{\psi(x)} →
[
P,ψ(x)

]
The package also provides a mechanism to declare delimited sets more flexibly. The above
definition could be written as follows:

\DeclareMathDelimiterSet{\comm}[2]

{\selectdeliml{[}{#1},{#2}\selectdelimr{]}}

1.1 Delimiter Sizes for Math Styles

In plain LATEX2ε the size modifiers \big, \Big, \bigg, \Bigg have the shortcoming that
they are based on a fixed font size of 10pt. More precisely, they use a vertical phantom of
height 8.5pt, 11.5pt, 14.5pt or 17.5pt, respectively to set the height of the delimiter. The
package amsmath corrects for font size by instead placing a (centred) vertical phantom of
height 1.2, 1.8, 2.4 or 3 times the size of the currently selected math font (height plus depth
of \Mathstrutbox@).

Unfortunately, it does not account for the currently selected math style. Therefore, the size
of delimiters in sub/superscripts cannot be adjusted appropriately (an arguably better type-
setting practice is to avoid complicated expressions in sub/superscripts in the first place),
they come out way too big:

e^{\big(ax+b\big)} → e

(
ax+b

)
This package modifies the definitions of the size modifiers (of amsmath) to automatically
adjust to sub/superscripts (subject to availability in the font):

e^{\big(ax+b\big)} → e(ax+b)

1.2 Spacing and Math Classes

Another shortcoming of the variable-size delimiters is that the spacing is noticeably different
from their fixed-size counterparts:

\square(ax+b)\square → □(ax+ b)□

\square\bigl(ax+b\bigr)\square → □
(
ax+ b

)
□

\square\left(ax+b\right)\square → □ (ax+ b)□

\square\left(ax+\big.b\right)\square → □
(
ax+ b

)
□

3

Often the construct \left* . . . \right* leaves a large amount of space around it. A suitable
way to fix this problem is to adjust the math class as follows:

\square(ax+b)\square → □(ax+ b)□

\square\mathopen{}\mathclose{\left(ax+b\right)}\square → □(ax+ b)□

This makes the expression look like \mathopen from the left and like \mathclose from the
right. Importantly, the delimited expression should be contained in the \mathclose block so
as to place any following sub/superscripts at the appropriate height. Unfortunately, the fix
is too elaborate in comparison to the benefits of appropriate spacing. For practical purposes,
consistent spacing can only be achieved by a more convenient mechanism.

On a related note, it is important to correctly specify the math class (such as \mathopen or
\mathclose) for the delimiters, for example:

\big(-1\big) →
(
− 1

)
\bigl(-1\bigr) →

(
−1

)
The math class can also make a major difference for intermediate delimiters, e.g.:

\bigl<\psi\big|\psi\bigr> →
〈
ψ
∣∣ψ〉

\bigl<\psi\mathpunct\big|\psi\bigr> →
〈
ψ
∣∣ψ〉

\bigl<\psi\mathinner\big|\psi\bigr> →
〈
ψ
∣∣ψ〉

\bigl<\psi\mathbin\big|\psi\bigr> →
〈
ψ
∣∣ ψ〉

\bigl<\psi\bigm|\psi\bigr> →
〈
ψ
∣∣ ψ〉

Depending on the particular situation, any of these expressions may be the most appropriate
representation.

The package delimset automatically takes care of the math classes of the left and right
delimiters. It also offers several choices for intermediate delimiters to take the context into
account.

1.3 Compounds and Broken Lines

The mechanism provided by the package requires the delimited expression to appear as
an uninterrupted compound. In particular, the expression cannot span several lines in a
multi-line equation or several columns in a matrix. The same restriction applies to the
elementary \left and \right construct. In cases where delimited expressions are torn
apart across several blocks, the delimiters have to be typeset individually. The package
offers a mechanism to display individual delimiters of a given delimiter set. It also assists in
maintaining the same type and size across blocks. Being able to display individual delimiters
of defined delimiter sets offers a broad range of (ab)use.

Individual delimiters of a set can be selected and displayed by specifying appropriate flags,
for example:

\brk(→ (, \brk) →)

These flags can be combined with the size specifier or other bracket modifiers, e.g.:

\brk^3(→
(
, \brk[s]^2) →

]
This enables to conveniently split delimited expressions over blocks of code, e.g.:

\brk[s]^3(\frac{A}{B} . . .
//
. . . \frac{C}{D}\brk[s]^3) →

[
A

B
· · ·

//
· · · C

D

]

4

Here, the type and modifiers specifying the delimiter set are repeated for all individual
delimiters. To simplify such expressions and their maintenance, the package provides global
registers which store the type and size of delimiters. With those, the above expression can
be abbreviated as:

\brk[s]^3[. . .
//
. . . \usedelim] or \brk[s]^3[. . .

//
. . . \brk]

Here, \usedelim], alternatively \brk], closes the delimiter set with the type and options
previously specified by \brk...[. For nesting purposes, there also exists a more elaborate
solution using registers, see below.

1.4 Philosophy

Semantic typesetting is one of the philosophies behind LATEX: The author should focus
on the content while the layout is taken care of by the engine. The (body of a) source
file largely codes the contents of the document, while the layout is largely specified by the
kernel, classes, styles and macro definitions (in the preamble). In order for the separation
of content and layout to work well, the meaning of the content must be accurately specified
by the source file so that the appropriate layout can be applied to it. For example, a left
bracket ‘(’ can have many meanings, which the engine could not possibly guess. Even a
simple compound expression such as [A,B] could have different meanings depending on
context such as a compact interval or a commutator. A semantic coding of the latter two
concepts such as \intv{A}{B} vs. \comm{A}{B} clearly distinguishes between them. This
allows the typesetting engine to represent them appropriately in every situation. It also
allows to consistently define or adjust the typeset representation globally according to one’s
taste, such as [A,B] vs. [A;B]. The price to pay is a larger number of abstract commands
(which possibly evaluate to the same expression) and using them to specify the semantics
throughout the source file (or at least where practical and useful). Conversely, the price to
pay for an immediate typesetting scheme is that all notations need to be fixed at the start,
and later adjustments require an elaborate search and replacement of (somewhat ambiguous)
patterns like [x,y].

Another distinction between TEX and LATEX is that the former frequently uses free-format
expressions such as {x\over y} whereas the latter normally uses structured commands with
arguments such as \frac{x}{y}. In that sense, the construct \left(ax+b\right) belongs
to the world of TEX, whereas an expression like \delim()*{ax+b} fits the LATEX framework
better.

1.5 Related CTAN Packages

There are at least three other packages which offer a similar functionality:

• The package delim supplies a command \delimdef to declare a set of delimiters which
is similar to the present \DeclareMathDelimiterSet. The size of delimiters to be
used in each case is then specified by a prefix command such as \mbig or \mauto.

• The package mathtools supplies commands \DeclarePairedDelimiter... (among
many other things) which are similar to the present \DeclareMathDelimiterSet. The
size of delimiters to be used in each case is then specified by an optional argument
such as ‘*’ or [\big].

• The package delimseasy defines a collection of useful delimiters such as \prn for round
parentheses or \sqpr square parentheses. Modifier letters can be prepended and ap-
pended to adjust their size.

5

http://ctan.org/pkg/delim
http://ctan.org/pkg/mathtools
http://ctan.org/pkg/delimseasy

A functionality of the present package not offered by any of the above packages is to typeset
delimiters on the fly, e.g.:

\delim<|>!{\psi}{\psi} →
〈
ψ
∣∣ψ〉

The mechanism to specify the size is leaner in the sense that it uses only a single character
and a single command.

2 Usage

To use the package delimset add the command

\usepackage{delimset}

to the preamble of your LATEX document. If not yet present, the package amsmath will be
loaded automatically.

2.1 Delimiter Sets and Presentation Flags

The package provides commands to represent various delimiter sets, see section 2.2 and
section 2.3 below. Their display can be modified systematically by specifying flags. A
delimiter set \name, e.g. \brk, is typically invoked by a sequence like:

\name flags {expr1}{expr2} . . .

where expr(n) are the terms to be enclosed by the delimiters and the optional flags adjust
the presentation of delimiters. The flags are described as follows:

First, a size modifier flag controls the size of the delimiters to be displayed. It can take one
of the following values:

0 default size (0.96 times default line height)

!, +, ^1 size \big (1.2 times default line height)

^2 size \Big (1.8 times default line height)

^3 size \bigg (2.4 times default line height)

^4 size \Bigg (3.0 times default line height)

^n, ^{x} flexible size adjustment (n=0. . . 9; x : decimal number)

_{h} adjustment to absolute height h (centred)

* variable size \left...\right

The intended delimiter size is stored as the dimension register:

\delimsize

It may be used to adjust spacing within the delimiter set proportional to the size of the de-
limiters. Note that the actual size of delimiters may deviate depending on availability within
the given font. Note further that the size cannot be determined for variable-size delimiters
(‘*’) and thus size \Big is assumed for this case. Note finally that the sub/superscript styles
are not taken into account and \delimsize applies to the default case \textstyle. The
package also supplies a macro to add horizontal glue proportional to the intended delimiter
size:

\kerndelim{width}

6

Here, width is the amount of horizontal glue in units of mu scaled by the ratio of \delimsize
and the current math font height. The macro does adjust for the selected script style.

Second, a delimiter selection flag is used to pick out and display just one individual delimiter
within the set. It can take one of the following values:

(left delimiter

|, , first intermediate delimiter

) right delimiter

?n n-th delimiter (starting with 0: left)

Third, register flags store are retrieve delimiter for splitting the across blocks or lines:

[store delimiter type to register ‘.’, display left delimiter (same as ‘>.(’)

] display right delimiter stored in default register ‘.’ (same as ‘<.)’)

>r, >{reg} store delimiter type in register r or reg

<r, <{reg} retrieve delimiter type from register r or reg

A register stores the type of delimiter set (\name), the desired size (except for variable size
‘*’) as well as the math class of the compound (‘’’ vs. ‘"’, see below). A stored register can
be retrieved and displayed by the macro:

\usedelim r sel or \usedelim{reg}sel

Here, sel is a flag to select an individual delimiter, see above.

In addition, there are some general purpose flags:

. terminates flag processing

: enclose delimiter set in block (for using total box dimensions)

’ render delimiter set as \mathopen and \mathclose

" render delimiter set as \mathinner

- display phantom delimiters (for individual delimiters)

Please note the following:

• A delimiter selector (including the combined flags ‘[’ and ‘]’) terminates flag process-
ing, therefore all relevant flags must be specified before it.

• Parsing also stops with the opening of the first term argument by means of the opening
brace ‘{’.

• Parsing can also be terminated manually by specifying the flag ‘.’ (in case the opening
brace ‘{’ for arguments is missing for whatever reason).

• Any other letter or token at the location of flags is interpreted as an unrecognised
flag and triggers a compiler error. For instance, \brk{x} must not be abbreviated as
\brk x because ‘x’ would be interpreted as a flag (it might be abbreviated as \brk.x).

• The legacy size modifier flags ‘1’ . . . ‘4’ provided for backward compatibility have the
same effect as ‘^1’. . . ‘^4’.

• The phantom delimiter flag ‘-’ does not work for variable size. It is intended for
reserving space for individual delimiters when they are composed manually into sets
(e.g. across lines).

• Technically, individual delimiters can be produced in the variable size version (even
though it may defeat the purpose of the delimiter selection mechanism). One has to

7

pay attention when using only the opening or only the closing delimiters from the
package and counterbalancing it by direct code for the opposite side. This is because
‘*(’ and ‘*)’ do not directly translate to \leftdelim and \rightdelim due to proper
spacing, see section 1.2. Instead, they translate to:

*(→ \mathopen{}\mathclose\bgroup\leftdelim

*) → \rightdelim\egroup

One should use analogous code to complete the manual variable size block.
Note that similar restrictions apply to using the flag ‘:’ for block enclosure which uses
\bgroup and \egroup as well.
As it does not make much sense to use variable-size (‘*’) and block (‘:’) compounds
for individual delimiter selection, the state of these flags is not stored in the global
registers.

2.2 Inline Declarations

The package provides three general purpose commands to compose delimiter sets with one,
two or three encapsulated expressions:

\delim{l}{r}flags{expr}

\delimpair{l}{m}{r}flags{expr1}{expr2}

\delimtriple{l}{m}{n}{r}flags{expr1}{expr2}{expr3}

The expression(s) expr(n) will be surrounded by the delimiters l and r and, in the case of
more than one expression, they will be separated by the delimiters m, n:

l expr r, l expr1 m expr2 r, l expr1 m expr2 n expr3 r

Here, l, r, m, n should be math delimiters delim (elementary symbols which can be used for
\left and \right) or the dot ‘.’ for the null delimiter. The delimiter set expression can be
adjusted in two ways:

First, size adjustment for the delimiters l, r, m, n can be suppressed by a starred variant:

{*token} or {*{expr}}

This allows to use an arbitrary token or a compound expression expr in place of a delimiter
delim. This is useful when a delimiter character should not adjust in size (e.g. commas), or
if a flexible-size version of the character is not available. One might also use a compound
expression to create a null delimiter with non-zero width (the width may be specified by
\kerndelim to make it proportional to the delimiter size).

Second, the intended math class of the intermediate delimiters m, n may be adjusted in
order to achieve a more appropriate automatic spacing by using {[class]delim}. Here, class
specifies the intended math class of the delimiter delim according to:

delim
{delim}

} {
no glue for size-adjusted delimiters (same as [o])
determined by expression for unadjusted size (* variant)

{[o]delim} no glue, similar to \big, \mathord, \mathopen, \mathclose

{[p]delim} followed by \thinmuskip, similar to \bigp, \mathpunct

{[i]delim} surrounded by \thinmuskip, similar to \bigi, \mathinner

{[b]delim} surrounded by \medmuskip, similar to \bigb, \mathbin

{[m]delim} surrounded by \thickmuskip, similar to \bigm, \mathrel

Please note the following:

8

• The left and right delimiters l and r are assigned to special classes: They leave
no initial and final glue on the enclosed expressions (same as \mathopen and
\mathclose). From the outside, the delimiter set appears either as a combination
of \mathopen+\mathclose (flag ‘’’) or as \mathinner (flag ‘"’).

• The legacy class [.] provided for backward compatibility specifies delimiters with
unadjusted size: the compound {[.]expr} has the same effect as {*{expr}}.

• The legacy class [c] provided for backward compatibility has the same effect as [o].

• Unadjusted-size delimiters can be combined with math classes as:

{[class]*token} or {[class]*{expr}}

• The opening square bracket ‘[’ takes the dual role of indicating the optional [class]
argument. To avoid conflicts on intermediate delimiters, opening square bracket de-
limiters should be encoded as ‘{{[}}’ (for \delim...) or ‘{[}’ (for \selectdelim)
rather than ‘[’.

2.3 Declarations

The above constructs can be used to define new delimiter commands via:

\newcommand{\name}{\delim{l}{r}flags}

\newcommand{\name}{\delimpair{l}{m}{r}flags}

\newcommand{\name}{\delimtriple{l}{m}{n}{r}flags}

Here it makes sense to drop all arguments starting at the optional flags argument from the
definition. The TEX parsing mechanism will then automatically use the tokens following
\name including the optional size modifier. If any of the encapsulated expression(s) are to
be passed as explicit arguments to \name, one will have to find an alternative way to pass
flags. However, it is possible to predefine flags which can be overridden by further flags
specified by the user.

The above declarations via \delim... should be sufficient for most situations. However,
there is an even more flexible way to declare delimiter sets:

\DeclareMathDelimiterSet{\name}[narg]{compositor}

The syntax of this command is equivalent to the one of \newcommand. The difference is that
the command \name first looks for the flags argument as described above in section 2.2. It
remembers the desired size for evaluating the macro expression compositor. Then it parses
the arguments as if the command was declared by \newcommand.

As usual, the macro expression compositor contains the command arguments specified by
#1, #2, Note that these should be encapsulated in groups {#1}, {#2}, . . . , in order to
prevent them from overwriting definitions at the level of the current group. It should also
contain the desired math delimiters specified by:

\selectdeliml[*]{delim}

\selectdelim[class][*]{delim}

\selectdelimr[*]{delim}

The three commands must be in proper sequence starting with \selectdeliml followed by
arbitrarily many \selectdelim and terminated by \selectdelimr. The math classes class
and starred variants are defined analogously to section 2.2. Here, the sizes are adjusted
automatically according to the previously specified modifier.

9

Picking out individual delimiters from a set declared by \DeclareMathDelimiterSet cannot
be achieved automatically. Instead, a selector method may be specified manually (where
needed) by:

\DeclareMathDelimiterSel{\name}

{\selectdeliml{l}[\or\selectdelim{m} . . .]}

{\selectdelimr{r}}

As many intermediate delimiters as needed can be specified at the end of the first argument;
each one must start with ‘\or’.

For example, one might declare a set of double square brackets [[∗]] using:

\DeclareMathDelimiterSet{\dsb}[1]

{\selectdeliml{[}\kerndelim{-1.75}\selectdelim[o]{[}{#1}

\selectdelim[o]{]}\kerndelim{-1.75}\selectdelimr{]}}

Here, the command \kerndelim{-1.75} reduces the spacing between the two square brack-
ets by approximately 1.75mu in default size. This could be used for:

\dsb^4{\dsb^3{\dsb^2{\dsb^1{\dsb{*}}}}} →

[[[[[[[[
[[∗]]

]]]]]]]]
, \dsb* . . .→

[[
x

y

]]
An appropriate selector method for displaying individual delimiters reads:

\DeclareMathDelimiterSel{\dsb}

{\selectdeliml{[}\kerndelim{-1.75}\selectdelim[o]{[}}

{\selectdelim[o]]\kerndelim{-1.75}\selectdelimr{]}}

Finally, towards a very flexible manual composition of delimiter sets, there is the macro:

\parsedelimflags{compositor}{selector}flags

It parses the modifier flags as described in section 2.1. The argument compositor is code
that displays the composited delimiter set whereas selector is a macro that displays the
delimiter number \selecteddelim of the set. The flags follow immediately and should be
terminated by an opening brace ‘{’, the terminating flag ‘.’ or a delimiter selection flag.

2.4 Default Declarations

The package predefines four commonly used sets of delimiters:

• \brk[type]flags{expr} represents a standard bracket around a single expression expr.
The type of bracket can be specified by the optional argument type:

empty or [r]: round (x), [s]: square [x], [c]: curly {x}, [a]: angle ⟨x⟩

• \eval[type]flags{expr} represents evaluation of a functional expression expr. The
type of bracket can be specified by the optional argument type:

empty or [v]: f(x)|a, [s]: [f(x)]ba

• \absflags{expr} represents the absolute value |expr|.
• \normflags{expr} represents the norm ∥expr∥.

The above definitions can be suppressed by setting the package option stddef to false, see
section 2.6. The package also defines some extended sets of delimiters as follows:

10

• \pairflags{expr1}{expr2} represents a pair(ing) (expr1, expr2).

• \setflags{expr} represents the set {expr}.
• \setcondflags{expr}{cond} represents a set with condition {expr|cond}.
• \intv[type]flags{expr1}{expr2} represents an interval from expr1 to expr2. The in/
exclusion of the bounds can be specified by the optional argument type:

empty or [c]: closed [a, b], [o]: open]a, b[,
[l]: left-open]a, b]
[r]: right-open [a, b[

• \avgflags{expr} represents some average ⟨expr⟩.
• \corrflags{expr} represents some correlator ⟨expr⟩.
• \commflags{expr1}{expr2} represents the commutator [expr1, expr2].

• \acommflags{expr1}{expr2} represents the anti-commutator {expr1, expr2}.
• \braflags{expr} represents a bra-vector ⟨expr| in quantum mechanics.

• \ketflags{expr} represents a ket-vector |expr⟩ in quantum mechanics.

• \braketflags{expr1}{expr2} represents a bra-ket contraction ⟨expr1|expr2⟩.
• \lfrac[type]flags{expr1}{expr2} describes the linear representation expr1/expr2 of
a fraction. An optional argument type taking values [r], [s], [c], [a] encloses the
fraction in round, square, curly or angle brackets as for \brk.

The extended definitions need to be activated by the package option extdef, see section 2.6.

If the representations of the above delimiters do not suit the purpose or taste of the user,
they can be redefined with \renewcommand.

2.5 Auxiliary Commands

In addition to the \bigl, \bigr and \bigm commands (as well as their \Big., \bigg. and
\Bigg. counterparts), the package defines three additional sets \bigp, \bigb and \bigi (and
counterparts). Here \bigp implies the math class \mathpunct, \bigb the class \mathbin

and \bigi the class \mathinner.

Furthermore, the package overloads the size calculation in the \big... commands to prop-
erly account for the math styles in sub/superscripts (\scriptstyle) and nested sub/su-
perscripts (\scriptscriptstyle). The latter behaviour can be controlled by the package
option scriptstyle, see section 2.6.

2.6 Package Options

Options can be passed to the package by:

\usepackage[opts]{delimset} or \PassOptionsToPackage{opts}{delimset}

Here opts is a comma-separated list of the available options:

• stddef[=true|false] controls the activation of standard delimiter definitions specified
in section 2.4. If no value is given true is assumed; initially set to true.

• extdef[=true|false] controls the activation of extended delimiter definitions specified
in section 2.4. If no value is given true is assumed; initially set to false.

• scriptstyle[=true|false] controls the overwriting of size modifiers explained in sec-
tion 2.5. If no value is given true is assumed; initially set to true.

11

3 Information

3.1 Copyright

Copyright © 2016–2024 Niklas Beisert

This work may be distributed and/or modified under the conditions of the LATEX Project
Public License, either version 1.3 of this license or (at your option) any later version. The
latest version of this license is in http://www.latex-project.org/lppl.txt and version
1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is Niklas Beisert.

This work consists of the files README.txt, delimset.ins and delimset.dtx as well as the
derived files delimset.sty, dlmssamp.tex and delimset.pdf.

3.2 Files and Installation

The package consists of the files

README.txt readme file
delimset.ins installation file
delimset.dtx source file
delimset.sty package file
dlmssamp.tex sample file
delimset.pdf manual

The distribution consists of the files README.txt, delimset.ins and delimset.dtx.

• Run (pdf)LATEX on delimset.dtx to compile the manual delimset.pdf (this file).

• Run LATEX on delimset.ins to create the package delimset.sty and the sample
dlmssamp.tex. Copy the file delimset.sty to an appropriate directory of your LATEX
distribution, e.g. texmf-root/tex/latex/delimset.

3.3 Interaction with CTAN Packages

The package is related to other packages available at CTAN:

• This package relies on some functionality of the package amsmath by using and over-
writing some native code. Compatibility with the amsmath package has been tested
with v2.15d (2016/06/28).

• This package uses the package keyval from the graphics bundle to process optional
arguments to the package options. Compatibility with the keyval package has been
tested with v1.15 (2014/10/28).

• The package icomma modifies the spacing behaviour of the comma character in math
mode which leads to inadequate spacing when it is used as a middle delimiter. To
achieve proper spacing in sample code, use {[p]*,} rather than {*,}. The extended
commands \intv, \comm, \acomm and \pair are compatible with the icomma package
has been tested with v2.0 (2002/03/10).

12

http://www.latex-project.org/lppl.txt

3.4 Revision History

v2.0: 2024/07/17

• option to display individual delimiters and to store them in global registers across
blocks (columns, lines, etc.)

• more general handling of unadjusted-size delimiters

• more general size adjustments

• added inner math class for intermediate delimiters

• added flag to enclose by open/close and inner math class

• added flag to display phantom delimiters

• selected size accessible by \delimsize and add proportional kerning by \kerndelim.

• added extended definition \lfrac for plain inline fractions

• null delimiter now properly has zero width for variable size

• internal mechanisms revised

• compatibility with icomma package (thanks to Olivier Godin for pointing out the issue)

v1.1: 2018/12/30

• classes added, class and size selection mechanism simplified

v1.01: 2018/01/17

• manual rearranged

v1.0: 2016/11/01

• extended standard definitions

• manual and installation package added

• first version published on CTAN

v0.5–0.7: 2016/05/08 – 2016/09/04

• basic functionality

• standard definitions

A Sample File

In this section we provide a LATEX example how to use some of the delimset features.

Preamble and beginning of document body:

1 \documentclass[12pt]{article}

2

3 \usepackage[margin=2cm]{geometry}

4 \usepackage{amsmath,amsfonts}

5 \usepackage{delimset}

6

7 \begin{document}

13

sizes for default brackets:

8 \[

9 \brk^0{x},\quad

10 \brk^1{x},\quad

11 \brk^2{x},\quad

12 \brk^3{x},\quad

13 \brk^4{x}

14 \]

styles for default brackets:

15 \[

16 \brk[r]{x},\quad

17 \brk[s]{x},\quad

18 \brk[c]{x},\quad

19 \brk[a]{x}

20 \]

nested brackets:

21 \[

22 \brk[c]^2{\brk[s]!{\brk{ax+b}x+c}x+d}

23 \]

default absolute value, norm and default evaluations:

24 \[

25 \abs*{\frac{ax+b}{cx+d}},\qquad

26 \norm*{\frac{ax+b}{cx+d}},\qquad

27 \eval*{\frac{ax+b}{cx+d}}_{x=0},\qquad

28 \eval[s]*{\frac{ax+b}{cx+d}}_{x=0}^{x=\infty}

29 \]

outer delimiter spacing:

30 \begin{align*}

31 &\square\brk^0{x}\square,&&\square\brk^1{A^k}\square,

32 \\

33 &\square\brk*{x}\square,&&\square\brk*{A^k}\square

34 \end{align*}

delimiter sizes in exponents:

35 \[

36 e^{\brk{ax+b}},\qquad

37 e^{\brk!{ax+b}}

38 \]

delimiter declaration:

39 \DeclareMathDelimiterSet{\braket}[2]

40 {\selectdeliml<#1\selectdelim|#2\selectdelimr>}

41 \[

42 \braket!{\psi}{\psi},

43 \quad

44 \braket*{\psi}{\psi\big.}

45 \]

delimiter usage:

46 \[

47 \delimpair<|>!{\psi}{\psi}

48 \]

14

conditional set, alternative layouts:

49 \[

50 \delimpair\{{[m]|}\}!{2n}{n\in\mathbb{Z}},

51 \quad

52 \delimpair\{{[b]|}\}!{2n}{n\in\mathbb{Z}},

53 \quad

54 \delimpair\{{[i]|}\}!{2n}{n\in\mathbb{Z}},

55 \quad

56 \delimpair\{{[p]|}\}!{2n}{n\in\mathbb{Z}},

57 \quad

58 \delimpair\{|\}!{2n}{n\in\mathbb{Z}},

59 \quad

60 \delimpair\{{*;}\}!{2n}{n\in\mathbb{Z}}

61 \]

62 conditional set, alternative layouts with variable size:

63 \[

64 \delimpair\{{[m]|}\}*{2n}{n\in\mathbb{Z}\big.},

65 \quad

66 \delimpair\{{[b]|}\}*{2n}{n\in\mathbb{Z}\big.},

67 \quad

68 \delimpair\{{[i]|}\}*{2n}{n\in\mathbb{Z}\big.},

69 \quad

70 \delimpair\{{[p]|}\}*{2n}{n\in\mathbb{Z}\big.},

71 \quad

72 \delimpair\{|\}*{2n}{n\in\mathbb{Z}\big.},

73 \quad

74 \delimpair\{{*;}\}*{2n}{n\in\mathbb{Z}\big.}

75 \]

delimiter definition:

76 \newcommand{\comm}{\delimpair[{*,}]}

77 \[

78 \comm!{\comm{A}{B}}{C}

79 +\comm!{\comm{B}{C}}{A}

80 +\comm!{\comm{C}{A}}{B}

81 =0

82 \]

alternative representation:

83 \renewcommand{\comm}{\delimpair[{*;}]}

84 \[

85 \comm!{\comm{A}{B}}{C}

86 +\comm!{\comm{B}{C}}{A}

87 +\comm!{\comm{C}{A}}{B}

88 =0

89 \]

display individual delimiters of a set:

90 \renewcommand{\braket}{\delimpair<|>}

91 \[

92 \braket{A}{B}

93 \to \braket(A \braket| B \braket),

94 \quad

95 \braket*(A\big. \braket*| B_{} \braket*),

96 \quad

97 \braket^1(A \braket^3| B \braket^2)

98 \]

15

placing indices before a bracket (does not work in variable-size mode because the final size
is not available for the enclosed expressions):

99 \DeclareMathDelimiterSet{\quadindex}[5]

100 {\selectdeliml.^{#2}_{#3}\mathord{}\selectdelim[o][

101 {#1}\selectdelim[o]]^{#4}_{#5}\selectdelimr.}

102 \[

103 \quadindex^2{\frac{x}{y}}{1}{2}{3}{4}

104 \]

end of document body:

105 \end{document}

B Implementation

In this section we describe the package delimset.sty.

Required Packages. The package loads the packages amsmath and keyval if not yet
present. amsmath is used for basic delimiter size functionality. keyval is used for extended
options processing.

106 \RequirePackage{amsmath}

107 \RequirePackage{keyval}

Package Options. The package has some boolean keyval options which can be set to true
or false.

108 \newif\ifdlm@std\dlm@stdtrue

109 \newif\ifdlm@ext\dlm@extfalse

110 \newif\ifdlm@script\dlm@scripttrue

111

112 \def\dlm@group{dlm@}

113 \define@key{\dlm@group}{stddef}[true]{\csname dlm@std#1\endcsname}

114 \define@key{\dlm@group}{extdef}[true]{\csname dlm@ext#1\endcsname}

115 \define@key{\dlm@group}{scriptstyle}[true]{\csname dlm@script#1\endcsname}

116

117 \DeclareOption*{\expandafter\setkeys\expandafter\dlm@group%

118 \expandafter{\CurrentOption}}

119 \ProcessOptions

Improved Size Adjustments. Overwrite the amsmath command \bBigg@ to select the
size according to the present math style (uses the amsmath definitions \@mathmeasure and
\big@size). This code is activated only if the package option scriptstyle is set to true.

120 \ifdlm@script

121 \def\bBigg@choice#1#2#3#4{%

122 {\@mathmeasure\z@{\nulldelimiterspace\z@}%

123 {\big@size#2\big@size#1\left#4\vcenter to#3\big@size{}\right.}%

124 \box\z@}}

125 \def\bBigg@#1#2{{\mathchoice%

126 {\bBigg@choice{\displaystyle}{1}{#1}{#2}}%

127 {\bBigg@choice{\textstyle}{1}{#1}{#2}}%

128 {\bBigg@choice{\scriptstyle}{0.7}{#1}{#2}}%

129 {\bBigg@choice{\scriptscriptstyle}{0.5}{#1}{#2}}}}

130 \fi

16

Define punctuation marks (\bigp, etc.), binary operators (\bigb, etc.) and inner class
(\bigi, etc.).

131 \providecommand{\bigp}{\mathpunct\big}

132 \providecommand{\Bigp}{\mathpunct\Big}

133 \providecommand{\biggp}{\mathpunct\bigg}

134 \providecommand{\Biggp}{\mathpunct\Bigg}

135 \providecommand{\bigb}{\mathbin\big}

136 \providecommand{\Bigb}{\mathbin\Big}

137 \providecommand{\biggb}{\mathbin\bigg}

138 \providecommand{\Biggb}{\mathbin\Bigg}

139 \providecommand{\bigi}{\mathinner\big}

140 \providecommand{\Bigi}{\mathinner\Big}

141 \providecommand{\biggi}{\mathinner\bigg}

142 \providecommand{\Biggi}{\mathinner\Bigg}

Size Adjustment Definitions. The macro \dlm@setvar enables variable size, the macro
\dlm@setsize sets a fixed size. Delimiter sizes are implented by \dlm@big@. The macro
\kerndelim adds some kerning proportional to the chosen fixed size of the delimiters (the
spacing is merely an approximation, and it does not actually scale for flexible size).

143 \newlength\delimsize

144 \newcommand{\dlm@setvar}{\let\dlm@ifvar\@firstoftwo\delimsize1.5\big@size}

145 \newcommand{\dlm@setsize}[1]{\let\dlm@ifvar\@secondoftwo%

146 \delimsize#1\big@size\advance\delimsize by\big@size\delimsize0.5\delimsize}

147 \newcommand{\dlm@setabssize}[1]{\let\dlm@ifvar\@secondoftwo\delimsize#1\relax}

148 \newcommand{\dlm@big@}[1]{{\mathchoice%

149 {\dlm@big@choice{\displaystyle}{1}{#1}}%

150 {\dlm@big@choice{\textstyle}{1}{#1}}%

151 {\dlm@big@choice{\scriptstyle}{0.7}{#1}}%

152 {\dlm@big@choice{\scriptscriptstyle}{0.5}{#1}}}}

153 \newcommand{\dlm@big@choice}[3]{\@mathmeasure\z@{\nulldelimiterspace\z@}%

154 {#1\left#3\vcenter to#2\delimsize{}\right.}\box\z@}

155 \newcommand{\kerndelim}[1]{{\delimsize#1\delimsize%

156 \mkern\muexpr1.2mu*\delimsize/\big@size\relax}}

Math Classes Processing. Define class selectors for fixed and unadjusted sizes.

157 \newcommand{\dlm@big}[2]{\dlm@plain{#1}{\dlm@big@#2}}

158 \newcommand{\dlm@plain}[2]{\dlm@class{#1}{\dlm@phantom{#2}}}

159 \newcommand{\dlm@class}[1]{\csname dlm@class@#1\endcsname}

160 \let\dlm@class@\@firstofone

161 \let\dlm@class@o\mathord

162 \let\dlm@class@c\mathord

163 \let\dlm@class@p\mathpunct

164 \let\dlm@class@i\mathinner

165 \let\dlm@class@b\mathbin

166 \let\dlm@class@m\mathrel

Define class selector for variable size. The macro \dlm@var@null removes the extra space
from variable-size null delimiters (\left., \middle. and \right. apply the value of
\nulldelimiterspace only at the end of math processing, even across blocks). The macro
\dlm@var@kern applies kerning unless in the script styles.

167 \newcommand{\dlm@var@null}[1]{\if.#1\kern-\nulldelimiterspace\fi}

168 \newcommand{\dlm@var@kern}[1]{\nonscript\mkern#1}

169 \newcommand{\dlm@var}[1]{\csname dlm@var@#1\endcsname}

17

170 \newcommand{\dlm@var@}[1]{\dlm@var@null#1\middle#1}

171 \let\dlm@var@o\dlm@var@

172 \let\dlm@var@c\dlm@var@

173 \newcommand{\dlm@var@p}[1]{\dlm@var@#1\dlm@var@kern\thinmuskip}

174 \newcommand{\dlm@var@i}[1]{\dlm@var@kern\thinmuskip%

175 \dlm@var@#1\dlm@var@kern\thinmuskip}

176 \newcommand{\dlm@var@b}[1]{\dlm@var@kern\medmuskip%

177 \dlm@var@#1\dlm@var@kern\medmuskip}

178 \newcommand{\dlm@var@m}[1]{\dlm@var@kern\thickmuskip%

179 \dlm@var@#1\dlm@var@kern\thickmuskip}

Definitions for selecting outer math class \mathopen+\mathclose vs. \mathinner.

180 \newcommand{\dlm@open@i}{\mathinner{}\mathclose{}\mathopen}

181 \newcommand{\dlm@close@i}{\mathclose{}\mathopen{}\mathinner}

182 \newcommand{\dlm@inner@oc}{\mathopen{}\mathclose}

183 \newcommand{\dlm@enclose@openclose}{%

184 \let\dlm@open\mathopen\let\dlm@close\mathclose\let\dlm@inner\dlm@inner@oc}

185 \newcommand{\dlm@enclose@inner}{%

186 \let\dlm@open\dlm@open@i\let\dlm@close\dlm@close@i\let\dlm@inner\mathinner}

Definitions for selecting inline vs. block insertion.

187 \newcommand{\dlm@inline@l}[1]{\dlm@open{#1}}

188 \newcommand{\dlm@inline@r}[1]{\dlm@close{#1}}

189 \newcommand{\dlm@block@l}[1]{\dlm@inner\bgroup\mathopen{#1}}

190 \newcommand{\dlm@block@r}[1]{\mathclose{#1}\egroup}

191 \newcommand{\dlm@enclose@inline}{%

192 \let\dlm@class@l\dlm@inline@l\let\dlm@class@r\dlm@inline@r}

193 \newcommand{\dlm@enclose@block}{%

194 \let\dlm@class@l\dlm@block@l\let\dlm@class@r\dlm@block@r}

Opening and closing definitions.

195 \newcommand{\dlm@plain@l}[1]{\dlm@class@l{\dlm@phantom{#1}}}

196 \newcommand{\dlm@plain@r}[1]{\dlm@class@r{\dlm@phantom{#1}}}

197 \newcommand{\dlm@big@l}[1]{\dlm@plain@l{\dlm@big@#1}}

198 \newcommand{\dlm@big@r}[1]{\dlm@plain@r{\dlm@big@#1}}

199 \newcommand{\dlm@var@l}[1]{\dlm@inner\bgroup\dlm@var@null#1\left#1}

200 \newcommand{\dlm@var@r}[1]{\right#1\dlm@var@null#1\egroup}

201 \newcommand{\dlm@var@pl}[1]{\dlm@var@l.\mathopen{#1}}

202 \newcommand{\dlm@var@pr}[1]{\mathclose{#1}\dlm@var@r.}

Delimiter Storage. Macros for storing and retrieving delimiter types using global regis-
ters.

203 \newcommand{\dlm@reg@save@init}[1]{%

204 \xdef#1{\delimsize\the\delimsize}\ifx\dlm@inner\mathinner%

205 \expandafter\gdef\expandafter#1\expandafter{#1\dlm@enclose@inner}\fi}

206 \newcommand{\dlm@reg@save}[2]{%

207 \expandafter\dlm@reg@save@init\csname dlm@reg@init@#1\endcsname%

208 \expandafter\gdef\csname dlm@reg@sel@#1\endcsname{#2}}

209 \newcommand{\dlm@reg@init}[1]{\csname dlm@reg@init@#1\endcsname}

210 \newcommand{\dlm@reg@sel}[1]{\csname dlm@reg@sel@#1\endcsname}

Flags Processing. The macro \parsedelimflags parses the optional argument(s) fol-
lowing \delim. . . commands to adjust the presentation. Parsing is terminated if the next

18

character in line begins a group (‘{’) and the delimiter set is composed by executing argu-
ment #1. A size flag is stored and parsing continues. A delimiter selector flag immediately
displays the desired delimiter by executing argument #2. Unknown flags produce an error
message.

211 \newcommand{\parsedelimflags}{\dlm@setsize{0.6}\let\dlm@phantom\@firstofone%

212 \dlm@enclose@openclose\dlm@enclose@inline\dlm@parseflags}

213 \newcommand{\dlm@parseflags}[2]{%

214 \@ifnextchar\bgroup{#1}{\dlm@parseflag{#1}{#2}}}

215 \newcommand{\dlm@parseflag}[3]{\begingroup%

216 \ifcsname dlm@parseflag@\string#3\endcsname%

217 \def\dlm@do{\csname dlm@parseflag@\string#3\endcsname{#1}{#2}}\else%

218 \def\dlm@do{\PackageError{delimset}%

219 {unknown delimiter set flag ‘\string#3’}{}#1}%

220 \fi\expandafter\endgroup\dlm@do}

221 \newcommand{\dlm@parsedef}[3]{%

222 \expandafter\def\csname dlm@parseflag@\string#1\endcsname ##1##2#2{#3}}

Note that the delimited expression should be contained within a group such that nested
delimiters will not overwrite the outer size definition.

Flags to adjust size. Note that sizes 0 and 1 amount to 0.96 and 1.2 times the current empty
math box height.

223 \dlm@parsedef{!}{}{\dlm@setsize{1}\dlm@parseflags{#1}{#2}}

224 \dlm@parsedef{+}{}{\dlm@setsize{1}\dlm@parseflags{#1}{#2}}

225 \dlm@parsedef{0}{}{\dlm@setsize{0.6}\dlm@parseflags{#1}{#2}}

226 \dlm@parsedef{1}{}{\dlm@setsize{1}\dlm@parseflags{#1}{#2}}

227 \dlm@parsedef{2}{}{\dlm@setsize{2}\dlm@parseflags{#1}{#2}}

228 \dlm@parsedef{3}{}{\dlm@setsize{3}\dlm@parseflags{#1}{#2}}

229 \dlm@parsedef{4}{}{\dlm@setsize{4}\dlm@parseflags{#1}{#2}}

230 \dlm@parsedef{^}{#3}{\dlm@setsize{#3}\dlm@parseflags{#1}{#2}}

231 \dlm@parsedef{_}{#3}{\dlm@setabssize{#3}\dlm@parseflags{#1}{#2}}

232 \dlm@parsedef{*}{}{\dlm@setvar\dlm@parseflags{#1}{#2}}

Flags to select individual delimiters.

233 \dlm@parsedef{(}{}{\def\selecteddelim{0}#2}

234 \dlm@parsedef{|}{}{\def\selecteddelim{1}#2}

235 \dlm@parsedef{,}{}{\def\selecteddelim{1}#2}

236 \dlm@parsedef{)}{}{\def\selecteddelim{9}#2}

237 \dlm@parsedef{?}{#3}{\def\selecteddelim{#3}#2}

Flags to access registers.

238 \dlm@parsedef{[}{}{\dlm@reg@save{.}{#2}\def\selecteddelim{0}#2}

239 \dlm@parsedef{]}{}{\dlm@reg@init{.}\def\selecteddelim{9}\dlm@reg@sel{.}}

240 \dlm@parsedef{>}{#3}{\dlm@reg@save{#3}{#2}}

241 \dlm@parsedef{<}{#3}{\dlm@reg@init{#3}\dlm@parseflags%

242 {\PackageError{delimset}{must select delimiter}{}}{\dlm@reg@sel{#3}}}

Further flags.

243 \dlm@parsedef{.}{}{#1}

244 \dlm@parsedef{:}{}{\dlm@enclose@block\dlm@parseflags{#1}{#2}}

245 \dlm@parsedef{’}{}{\dlm@enclose@openclose\dlm@parseflags{#1}{#2}}

246 \dlm@parsedef{"}{}{\dlm@enclose@inner\dlm@parseflags{#1}{#2}}

247 \dlm@parsedef{-}{}{\let\dlm@phantom\phantom\dlm@parseflags{#1}{#2}}

19

Delimiter Display. The command \selectdelim reproduces the delimiter in argument
#2 using the math class given in argument #1 and the previously stored size. If the class
identifier is ‘.’, just return the delimiter argument as is. The commands \selectdeliml

and \selectdelimr implement the left and right delimiter classes, respectively.

248 \newcommand{\selectdelim}[1][]{\begingroup\def\dlm@do{\@ifstar{\dlm@plain{#1}}%

249 {\dlm@ifvar{\dlm@var{#1}}{\dlm@big{#1}}}}%

250 \if.#1\let\dlm@do\@empty\fi\expandafter\endgroup\dlm@do}

251 \newcommand{\selectdeliml}{\@ifstar%

252 {\dlm@ifvar\dlm@var@pl\dlm@plain@l}{\dlm@ifvar\dlm@var@l\dlm@big@l}}

253 \newcommand{\selectdelimr}{\@ifstar%

254 {\dlm@ifvar\dlm@var@pr\dlm@plain@r}{\dlm@ifvar\dlm@var@r\dlm@big@r}}

Declaration of New Delimiter Commands. The macro \DeclareMathDelimiterSet

declares a new set of delimiters as the macro ‘\name’. This macro checks for optional flags
and stores the desired size. It then passes on to a second macro ‘\dlm@dcl@name’, which
takes the actual code. If the flags select an individual delimiter, the macro ‘\dlm@sel@name’
is called instead. The latter macro should be defined via \DeclareMathDelimiterSel such
that it produces the desired delimiter number \selecteddelim.

255 \newcommand{\DeclareMathDelimiterSet}[1]{\expandafter\dlm@declare%

256 \csname dlm@dcl@\expandafter\@gobble\string#1\endcsname{#1}}

257 \def\dlm@declare#1#2{\expandafter\dlm@declare@%

258 \csname dlm@sel@\expandafter\@gobble\string#2\endcsname{#1}{#2}}

259 \def\dlm@declare@#1#2#3{\newcommand{#3}{\parsedelimflags{#2}{#1}}%

260 \providecommand{#1}{}\newcommand{#2}}

261 \newcommand{\DeclareMathDelimiterSel}[3]{\expandafter\def%

262 \csname dlm@sel@\expandafter\@gobble\string#1\endcsname%

263 {\ifcase\selecteddelim#2\else#3\fi}}

Inline Delimiter Declarations. Inline declaration for delimiters via \delim.... The
following code is similar to the one produced by \DeclareMathDelimiterSet, but the de-
limiter arguments are processed before the optional size modifier.

\delim is used for a single delimited expression.

264 \newcommand{\delim}[2]{%

265 \parsedelimflags{\dlm@dcl@delim{#1}{#2}}{\dlm@sel@delim{#1}{#2}}}

266 \newcommand{\dlm@dcl@delim}[3]{%

267 \selectdeliml#1{#3}\selectdelimr#2}

268 \newcommand{\dlm@sel@delim}[2]{\ifcase\selecteddelim\selectdeliml#1%

269 \else\selectdelimr#2\fi}

\delimpair is used for two delimited expressions separated by an intermediate delimiter.

270 \newcommand{\delimpair}[3]{%

271 \parsedelimflags{\dlm@dcl@delimpair{#1}{#2}{#3}}%

272 {\dlm@sel@delimpair{#1}{#2}{#3}}}

273 \newcommand{\dlm@dcl@delimpair}[5]{%

274 \selectdeliml#1{#4}\selectdelim#2{#5}\selectdelimr#3}

275 \newcommand{\dlm@sel@delimpair}[3]{\ifcase\selecteddelim\selectdeliml#1%

276 \or\selectdelim#2\else\selectdelimr#3\fi}

\delimtriple is used for three delimited expressions separated by two intermediate delim-
iters.

277 \newcommand{\delimtriple}[4]{%

278 \parsedelimflags{\dlm@dcl@delimtriple{#1}{#2}{#3}{#4}}%

20

279 {\dlm@sel@delimtriple{#1}{#2}{#3}{#4}}}

280 \newcommand{\dlm@dcl@delimtriple}[7]{%

281 \selectdeliml#1{#5}\selectdelim#2{#6}\selectdelim#3{#7}\selectdelimr#4}

282 \newcommand{\dlm@sel@delimtriple}[4]{\ifcase\selecteddelim\selectdeliml#1%

283 \or\selectdelim#2\or\selectdelim#3\else\selectdelimr#4\fi}

\usedelim retrieves a stored delimiter type. The argument ‘]’ immediately closes the de-
limiter set using the default register. Otherwise the desired register must be followed by the
delimiter selection flag.

284 \newcommand{\usedelim}{\@ifnextchar]{\parsedelimflags{}{}}{\parsedelimflags%

285 {\PackageError{delimset}{must select delimiter}{}}{}<}}

Standard Definitions. Define some common delimiters (by providecommand so as not to
overwrite previously existing commands). This code is activated only if the package option
stddef is set to true.

286 \ifdlm@std

287 \providecommand{\brk}[1][r]{\begingroup\def\dlm@use{\delim()}%

288 \if r#1\def\dlm@use{\delim()}\fi%

289 \if s#1\def\dlm@use{\delim[]}\fi%

290 \if c#1\def\dlm@use{\delim\{\}}\fi%

291 \if a#1\def\dlm@use{\delim<>}\fi%

292 \expandafter\endgroup\dlm@use}

293 \providecommand{\eval}[1][v]{\begingroup\def\dlm@use{\delim.\rvert}%

294 \if v#1\def\dlm@use{\delim.\rvert}\fi%

295 \if s#1\def\dlm@use{\delim[]}\fi%

296 \expandafter\endgroup\dlm@use}

297 \providecommand{\abs}{\delim\lvert\rvert}

298 \providecommand{\norm}{\delim\lVert\rVert}

299 \fi

Extended Definitions. Define some extended delimiters. This code is activated only if
the package option extdef is set to true.

300 \ifdlm@ext

301 \providecommand{\pair}{\delimpair({[p]*,})}

302 \providecommand{\set}{\delim\{\}}

303 \providecommand{\setcond}{\delimpair\{|\}}

304 \providecommand{\intv}[1][c]{\begingroup%

305 \def\dlm@use{\delimpair[{[p]*,}]}%

306 \if c#1\def\dlm@use{\delimpair[{[p]*,}]}\fi%

307 \if l#1\def\dlm@use{\delimpair]{[p]*,}]}\fi%

308 \if r#1\def\dlm@use{\delimpair[{[p]*,}[}\fi%

309 \if o#1\def\dlm@use{\delimpair]{[p]*,}[}\fi%

310 \expandafter\endgroup\dlm@use}

311 \providecommand{\avg}{\delim<>}

312 \providecommand{\corr}{\delim<>}

313 \providecommand{\comm}{\delimpair[{[p]*,}]}

314 \providecommand{\acomm}{\delimpair\{{[p]*,}\}}

315 \providecommand{\bra}{\delim<|}

316 \providecommand{\ket}{\delim|>}

317 \providecommand{\braket}{\delimpair<|>}

318 \providecommand{\lfrac}[1][]{\begingroup%

319 \def\dlm@use{\delimpair./.}%

320 \if r#1\def\dlm@use{\delimpair(/)}\fi%

321 \if s#1\def\dlm@use{\delimpair[/]}\fi%

21

322 \if c#1\def\dlm@use{\delimpair\{/\}}\fi%

323 \if a#1\def\dlm@use{\delimpair</>}\fi%

324 \expandafter\endgroup\dlm@use}

325 \fi

22

	Contents
	1 Introduction
	1.1 Delimiter Sizes for Math Styles
	1.2 Spacing and Math Classes
	1.3 Compounds and Broken Lines
	1.4 Philosophy
	1.5 Related CTAN Packages

	2 Usage
	2.1 Delimiter Sets and Presentation Flags
	2.2 Inline Declarations
	2.3 Declarations
	2.4 Default Declarations
	2.5 Auxiliary Commands
	2.6 Package Options

	3 Information
	3.1 Copyright
	3.2 Files and Installation
	3.3 Interaction with CTAN Packages
	3.4 Revision History

	A Sample File
	B Implementation

