Main equations

Here an equation

$$\dot{Q} = k \cdot A \cdot \Delta T$$ \hspace{1cm} (1)

or another one

$$\frac{1}{k} = \left[\frac{1}{\alpha_i r_i} + \sum_{j=1}^{n} \frac{1}{\lambda_j} \ln \frac{r_{a,j}}{r_{i,j}} + \frac{1}{\alpha_a r_a} \right] \cdot r_{\text{reference}}$$ \hspace{1cm} (2)

Nomenclature

Latin Letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area</td>
<td>m2</td>
</tr>
<tr>
<td>k</td>
<td>overall heat transfer coefficient</td>
<td>W/(m2K)</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
<td>m</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>heat flux</td>
<td>W</td>
</tr>
<tr>
<td>ΔT</td>
<td>temperature difference</td>
<td>K</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>K</td>
</tr>
</tbody>
</table>

Greek Letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>convection heat transfer coefficient</td>
<td>W/(m2K)</td>
</tr>
<tr>
<td>λ</td>
<td>thermal conductivity</td>
<td>W/K</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>out</td>
</tr>
<tr>
<td>i</td>
<td>in</td>
</tr>
<tr>
<td>j</td>
<td>running parameter</td>
</tr>
<tr>
<td>n</td>
<td>number of walls</td>
</tr>
</tbody>
</table>