From version 4.00, \texttt{tkz-euclide} became independent from \texttt{tkz-base}. This has implied some changes: the next major step will be the version 5 which will see the introduction of Lua. To prepare for this change, I removed the last macros that allowed to plot and define at the same time. Indeed Lua will be there to make all the calculations and define all the necessary nodes. As for Ti\textit{k}Z, it will remain to carry out the tracings, the markings and the labels.\texttt{tkz-euclide} is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. It handles the most classic situations in Euclidean Geometry. \texttt{tkz-euclide} is built on top of PGF and its associated front-end Ti\textit{k}Z and is a (La)\textit{t}e\textit{x}-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.

English is not my native language so there might be some errors.

Firstly, I would like to thank Till Tantau for the beautiful \texttt{\LaTeX} package, namely \texttt{Ti\textit{k}Z}.

Acknowledgements: I received much valuable advice, remarks, corrections and examples from Jean-Côme Charpentier, Josselin Noirel, Manuel Pégourié-Gonnard, Franck Pastor, David Arnold, Ulrike Fischer, Stefan Kottwitz, Christian Tellechea, Nicolas Kisselhoff, David Arnold, Wolfgang Büchel, John Kitzmiller, Dimitri Kapetas, Gaëtan Marris, Mark Wibrow, Yes Combe for his work on a protractor, Paul Gaborit, Laurent Van Deik for all his corrections, remarks and questions and Muzimuzhi Z for the code about the option "dim".

I would also like to thank Eric Weisstein, creator of MathWorld: MathWorld.

You can find some examples on my site: altermundus.fr. under construction!

Please report typos or any other comments to this documentation to: Alain Matthes.
This file can be redistributed and/or modified under the terms of the \texttt{\LaTeX} Project Public License Distributed from CTAN archives.
Contents

I. General survey: a brief but comprehensive review

0.1. With 4.2 version .. 15
0.2. Changes with previous versions 17

1. Installation .. 18

2. Presentation and Overview

2.1. Why \texttt{tkz-euclide}? .. 19
2.2. \texttt{TikZ} vs \texttt{tkz-euclide} 19
 2.2.1. Book I, proposition I _Euclid's Elements_ 19
 2.2.2. Complete code with \texttt{tkz-euclide} 20
 2.2.3. Book I, Proposition II _Euclid's Elements_ 21
2.3. \texttt{tkz-euclide} vs \texttt{tkz-euclide} 23
2.4. How to use the \texttt{tkz-euclide} package? 23
 2.4.1. Let's look at a classic example 23
 2.4.2. Part I: golden triangle 25
 2.4.3. Part II: two others methods with golden and euclid triangle 26
 2.4.4. Complete but minimal example 27

3. The Elements of \texttt{tkz} code .. 29

3.1. Objects and language .. 29
3.2. Notations and conventions ... 30
3.3. \texttt{Set, Calculate, Draw, Mark, Label} 31

4. About this documentation and the examples 32

II. Setting

5. First step: fixed points .. 34

6. Definition of a point: \texttt{\tkzDefPoint or \tkzDefPoints} 34
 6.1. Defining a named point \texttt{\tkzDefPoint} 35
 6.1.1. Cartesian coordinates 35
 6.1.2. Calculations with \texttt{xfp} 36
 6.1.3. Polar coordinates 36
 6.1.4. Relative points .. 36
 6.2. Point relative to another: \texttt{\tkzDefShiftPoint} 36
 6.2.1. Isosceles triangle 37
 6.2.2. Equilateral triangle 37
 6.2.3. Parallelogram ... 37
 6.3. Definition of multiple points: \texttt{\tkzDefPoints} 38
 6.4. Create a triangle ... 38
 6.5. Create a square ... 38

III. Calculating

7. Auxiliary tools .. 40
 7.1. Constants ... 40
 7.2. New point by calculation 40
8. Special points
 8.1. Middle of a segment \texttt{tkzDefMidPoint} .. 41
 8.1.1. Use of \texttt{tkzDefMidPoint} ... 41
 8.2. Golden ratio \texttt{tkzDefGoldenRatio} .. 41
 8.2.1. Use the golden ratio to divide a line segment 42
 8.2.2. Golden arbelos ... 42
 8.3. Barycentric coordinates with \texttt{tkzDefBarycentricPoint} 42
 8.3.1. with two points ... 43
 8.3.2. with three points .. 43
 8.4. Internal and external Similitude Center ... 43
 8.4.1. Internal and external with \texttt{node} 44
 8.4.2. D'Alembert Theorem .. 44
 8.4.3. Example with \texttt{node} ... 45
 8.5. Harmonic division with \texttt{tkzDefHarmonic} 46
 8.5.1. options \texttt{ext} and \texttt{int} ... 46
 8.5.2. Bisector and harmonic division .. 46
 8.5.3. option \texttt{both} ... 47
 8.6. Equidistant points with \texttt{tkzzEquiPoints} 47
 8.6.1. Using \texttt{tkzzEquiPoints} with options 47
 8.7. Middle of an arc .. 47

9. Point on line or circle .. 49
 9.1. Point on a line with \texttt{tkzDefPointOnLine} 49
 9.1.1. Use of option \texttt{pos} .. 50
 9.2. Point on a circle with \texttt{tkzDefPointOnCircle} 50
 9.2.1. Altshiller's Theorem ... 50
 9.2.2. Use of .. 51

10. Special points relating to a triangle ... 52
 10.1. Triangle center: \texttt{tkzDefTriangleCenter} 52
 10.1.1. Option \texttt{ortho} or \texttt{orthic} ... 52
 10.1.2. Option \texttt{centroid} ... 53
 10.1.3. Option \texttt{circum} ... 53
 10.1.4. Option \texttt{in} ... 53
 10.1.5. Option \texttt{ex} ... 53
 10.1.6. Option \texttt{euler} ... 54
 10.1.7. Option \texttt{symmedian} ... 54
 10.1.8. Option \texttt{spieker} .. 55
 10.1.9. Option \texttt{gergonne} ... 55
 10.1.10. Option \texttt{nagel} ... 56
 10.1.11. Option \texttt{mittenpunkt} ... 56
 10.1.12. Relation between \texttt{gergonne}, \texttt{centroid} and \texttt{mittenpunkt} .. 57

11. Definition of points by transformation .. 57
 11.1. \texttt{tkzDefPointBy} ... 58
 11.1.1. translation .. 58
 11.1.2. reflection (orthogonal symmetry) ... 59
 11.1.3. homothety and projection .. 59
 11.1.4. projection ... 60
 11.1.5. symmetry ... 60
 11.1.6. rotation ... 61
 11.1.7. rotation in radian ... 61
 11.1.8. rotation with nodes .. 61

\texttt{tkz-euclide} AlterMundus
Contents

11.9. inversion .. 61
11.10. Inversion of lines ex 1 63
11.11. inversion of lines ex 2 63
11.12. inversion of lines ex 3 63
11.13. inversion of circle and homothety 64
11.14. inversion of Triangle with respect to the Incircle .. 64
11.15. inversion: orthogonal circle with inversion circle ... 64
11.16. inversion negative 65
11.2. Transformation of multiple points; \texttt{\textbackslash tkzDefPointsBy} 66
11.2.1. translation of multiple points 66
11.2.2. symmetry of multiple points: an oval 67
12. Defining points using a vector 67
12.1. \texttt{\textbackslash tkzDefPointWith} 67
12.1.1. Option \texttt{colinear at}, simple example 68
12.1.2. Option \texttt{colinear at}, complex example 68
12.1.3. Option \texttt{colinear at} 69
12.1.4. Option \texttt{colinear at} 69
12.1.5. Option \texttt{orthogonal} 69
12.1.6. Option \texttt{orthogonal} 70
12.1.7. Option \texttt{orthogonal} more complicated example 70
12.1.8. Options \texttt{colinear} and \texttt{orthogonal} 71
12.1.9. Option \texttt{orthogonal normed} 71
12.1.10. Option \texttt{orthogonal normed} and K=2 71
12.1.11. Option \texttt{linear} 71
12.1.12. Option \texttt{linear normed} 72
12.2. \texttt{\textbackslash tkzGetVectxy} 72
12.2.1. Coordinate transfer with \texttt{\textbackslash tkzGetVectxy} 72
13. Straight lines ... 72
13.1. Definition of straight lines 72
13.1.1. With \texttt{mediator} 73
13.1.2. An envelope with option \texttt{mediator} 73
13.1.3. A parabola with option \texttt{mediator} 73
13.1.4. With options \texttt{bisector} and \texttt{normed} 74
13.1.5. With option \texttt{parallel=through} 74
13.1.6. With option \texttt{orthogonal} and \texttt{parallel} 75
13.1.7. With option \texttt{altitude} 75
13.1.8. With option \texttt{euler} 75
13.1.9. Tangent passing through a point on the circle \texttt{tangent at} 76
13.1.10. Choice of contact point with tangents passing through an external point option \texttt{tangent from} 76
13.1.11. Example of tangents passing through an external point 77
13.1.12. Example of Andrew Mertz 77
13.1.13. Drawing a tangent option \texttt{tangent from} 78
14. Triangles .. 78
14.1. Definition of triangles \texttt{\textbackslash tkzDefTriangle} 78
14.1.1. Option \texttt{equilateral} 79
14.1.2. Option \texttt{two angles} 80
14.1.3. Option \texttt{school} 80
14.1.4. Option \texttt{pythagore} 80
14.1.5. Option \texttt{pythagore} and \texttt{swap} 80
Contents

16.3.3. Homothety ... 104
16.3.4. Symmetry .. 105
16.3.5. Rotation .. 105
16.3.6. Inversion .. 105

17. Intersections 105
17.1. Intersection of two straight lines \tkzInterLL 106
17.1.1. Example of intersection between two straight lines 106
17.2. Intersection of a straight line and a circle \tkzInterLC 106
17.2.1. test line-circle intersection 107
17.2.2. Line-circle intersection 107
17.2.3. Line passing through the center option common 107
17.2.4. Line-circle intersection with option common 108
17.2.5. Line-circle intersection order of points 108
17.2.6. Example with \foreach 109
17.2.7. Line-circle intersection with option near 109
17.2.8. More complex example of a line-circle intersection 110
17.2.9. Circle defined by a center and a measure, and special cases .. 110
17.2.10. Calculation of radius 111
17.2.11. Option "with nodes" 112
17.3. Intersection of two circles \tkzInterCC 112
17.3.1. test circle-circle intersection 113
17.3.2. circle-circle intersection with common point 113
17.3.3. circle-circle intersection order of points 113
17.3.4. Construction of an equilateral triangle 114
17.3.5. Segment trisection 114
17.3.6. With the option "with nodes" 115
17.3.7. Mix of intersections 115
17.3.8. Altshiller-Court's theorem 115

18. Angles 116
18.1. Definition and usage with \tkzEuclide 116
18.2. Recovering an angle \tkzGetAngle 117
18.3. Angle formed by three points 117
18.3.1. Verification of angle measurement 118
18.3.2. Determination of the three angles of a triangle 118
18.3.3. Angle between two circles 118
18.4. Angle formed by a straight line with the horizontal axis \tkzFindSlopeAngle 119
18.4.1. How to use \tkzFindSlopeAngle 119
18.4.2. Use of \tkzFindSlopeAngle and \tkzGetAngle 119
18.4.3. Another use of \tkzFindSlopeAngle 120

19. Random point definition 120
19.1. Obtaining random points 120
19.1.1. Random point in a rectangle 121
19.1.2. Random point on a segment or a line 121
19.1.3. Random point on a circle or a disk 121

IV. Drawing and Filling 122

20. Drawing 123
20.1. Draw a point or some points 123
20.1.1. Drawing points \tkzDrawPoint 123
20.1.2. Example of point drawings .. 123
20.1.3. Example ... 124

21. Drawing the lines .. 124
21.1. Draw a straight line ... 124
21.1.1. Examples with \texttt{add} ... 125
21.1.2. Example with \texttt{\tkzDrawLines} 125

22. Drawing a segment ... 125
22.1. Draw a segment \texttt{\tkzDrawSegment} 125
22.1.1. Example with point references 126
22.1.2. Example of extending an segment with option \texttt{add} 126
22.1.3. Adding dimensions with option \texttt{dim} new code from Muzimuzhi Z .. 126
22.1.4. Adding dimensions with option \texttt{dim partI} 127
22.1.5. Adding dimensions with option \texttt{dim part II} 128
22.2. Drawing segments \texttt{\tkzDrawSegments} 128
22.2.1. Place an arrow on segment 128
22.3. Drawing line segment of a triangle 129
22.3.1. How to draw \texttt{Altitude} 129
22.4. Drawing a polygon ... 130
22.4.1. \texttt{\tkzDrawPolygon} ... 130
22.4.2. Option \texttt{two angles} .. 130
22.4.3. Style of line ... 130
22.5. Drawing a polygonal chain ... 130
22.5.1. Polygonal chain ... 131
22.5.2. The idea is to inscribe two squares in a semi-circle. 131
22.5.3. Polygonal chain: index notation 131

23. Draw a circle with \texttt{\tkzDrawCircle} 131
23.1. Draw one circle .. 131
23.1.1. Circles and styles, draw a circle and color the disc 132
23.2. Drawing circles .. 132
23.2.1. Circles defined by a triangle. 133
23.2.2. Concentric circles. ... 133
23.2.3. Exinscribed circles. ... 134
23.2.4. Cardioid .. 134
23.3. Drawing semicircle .. 135
23.3.1. Use of \texttt{\tkzDrawSemiCircle} 135
23.4. Drawing semicircles ... 135
23.4.1. Use of \texttt{\tkzDrawSemiCircles}: Golden arbelos 136

24. Drawing arcs ... 136
24.1. Macro: \texttt{\tkzDrawArc} .. 136
24.1.1. Option \texttt{towards} ... 136
24.1.2. Option \texttt{towards} ... 137
24.1.3. Option \texttt{rotate} .. 137
24.1.4. Option \texttt{R} .. 137
24.1.5. Option \texttt{R with nodes} 138
24.1.6. Option \texttt{delta} .. 138
24.1.7. Option \texttt{angles}: example 1 138
24.1.8. Option \texttt{angles}: example 2 139
24.1.9. Option \texttt{reverse}: inversion of the arrow 139
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Drawing a sector or sectors</td>
<td>139</td>
</tr>
<tr>
<td>25.1.</td>
<td>\texttt{\tkzDrawSector}</td>
<td>139</td>
</tr>
<tr>
<td>25.1.1.</td>
<td>\texttt{\tkzDrawSector} and \texttt{towards}</td>
<td>140</td>
</tr>
<tr>
<td>25.1.2.</td>
<td>\texttt{\tkzDrawSector} and \texttt{rotate}</td>
<td>140</td>
</tr>
<tr>
<td>25.1.3.</td>
<td>\texttt{\tkzDrawSector} and \texttt{R}</td>
<td>140</td>
</tr>
<tr>
<td>25.1.4.</td>
<td>\texttt{\tkzDrawSector} and \texttt{R with nodes}</td>
<td>140</td>
</tr>
<tr>
<td>25.1.5.</td>
<td>\texttt{\tkzDrawSector} and \texttt{R with nodes}</td>
<td>141</td>
</tr>
<tr>
<td>25.2.</td>
<td>Coloring a disc</td>
<td>141</td>
</tr>
<tr>
<td>25.2.1.</td>
<td>Yin and Yang</td>
<td>142</td>
</tr>
<tr>
<td>25.2.2.</td>
<td>From a sangaku</td>
<td>142</td>
</tr>
<tr>
<td>25.2.3.</td>
<td>Clipping and filling part I</td>
<td>143</td>
</tr>
<tr>
<td>25.2.4.</td>
<td>Clipping and filling part II</td>
<td>143</td>
</tr>
<tr>
<td>25.2.5.</td>
<td>Clipping and filling part III</td>
<td>144</td>
</tr>
<tr>
<td>25.3.</td>
<td>Coloring a polygon</td>
<td>144</td>
</tr>
<tr>
<td>25.3.1.</td>
<td>\texttt{\tkzFillPolygon}</td>
<td>144</td>
</tr>
<tr>
<td>25.4.</td>
<td>\texttt{\tkzFillSector}</td>
<td>144</td>
</tr>
<tr>
<td>25.4.1.</td>
<td>\texttt{\tkzFillSector} and \texttt{towards}</td>
<td>145</td>
</tr>
<tr>
<td>25.4.2.</td>
<td>\texttt{\tkzFillSector} and \texttt{rotate}</td>
<td>145</td>
</tr>
<tr>
<td>25.5.</td>
<td>Colour an angle: \texttt{\tkzFillAngle}</td>
<td>145</td>
</tr>
<tr>
<td>25.5.1.</td>
<td>Example with \texttt{size}</td>
<td>146</td>
</tr>
<tr>
<td>25.5.2.</td>
<td>Changing the order of items</td>
<td>146</td>
</tr>
<tr>
<td>25.5.3.</td>
<td>Multiples angles</td>
<td>147</td>
</tr>
<tr>
<td>26.</td>
<td>Controlling Bounding Box</td>
<td>147</td>
</tr>
<tr>
<td>26.1.</td>
<td>Utility of \texttt{\tkzInit}</td>
<td>147</td>
</tr>
<tr>
<td>26.2.</td>
<td>\texttt{\tkzInit}</td>
<td>148</td>
</tr>
<tr>
<td>26.3.</td>
<td>\texttt{\tkzClip}</td>
<td>148</td>
</tr>
<tr>
<td>26.4.</td>
<td>\texttt{\tkzClip} and the option \texttt{space}</td>
<td>148</td>
</tr>
<tr>
<td>26.5.</td>
<td>\texttt{\tkzShowBB}</td>
<td>149</td>
</tr>
<tr>
<td>26.5.1.</td>
<td>Example with \texttt{\tkzShowBB}</td>
<td>149</td>
</tr>
<tr>
<td>26.6.</td>
<td>\texttt{\tkzClipBB}</td>
<td>149</td>
</tr>
<tr>
<td>26.6.1.</td>
<td>Example with \texttt{\tkzClipBB} and the bisectors</td>
<td>150</td>
</tr>
<tr>
<td>27.</td>
<td>Clipping different objects</td>
<td>151</td>
</tr>
<tr>
<td>27.1.</td>
<td>Clipping a polygon</td>
<td>151</td>
</tr>
<tr>
<td>27.1.1.</td>
<td>\texttt{\tkzClipPolygon}</td>
<td>151</td>
</tr>
<tr>
<td>27.1.2.</td>
<td>\texttt{\tkzClipPolygon[out]}</td>
<td>151</td>
</tr>
<tr>
<td>27.1.3.</td>
<td>Example: use of "Clip" for Sangaku in a square</td>
<td>152</td>
</tr>
<tr>
<td>27.2.</td>
<td>Clipping a disc</td>
<td>152</td>
</tr>
<tr>
<td>27.2.1.</td>
<td>Simple clip</td>
<td>152</td>
</tr>
<tr>
<td>27.3.</td>
<td>Clip out</td>
<td>153</td>
</tr>
<tr>
<td>27.4.</td>
<td>Intersection of disks</td>
<td>153</td>
</tr>
<tr>
<td>27.5.</td>
<td>Clipping a sector</td>
<td>153</td>
</tr>
<tr>
<td>27.5.1.</td>
<td>Example 1</td>
<td>154</td>
</tr>
<tr>
<td>27.5.2.</td>
<td>Example 2</td>
<td>154</td>
</tr>
<tr>
<td>27.6.</td>
<td>Options from TikZ: trim left or right</td>
<td>154</td>
</tr>
<tr>
<td>27.7.</td>
<td>TikZ Controls \texttt{\pgfinterruptboundingbox} and \texttt{\endpgfinterruptboundingbox}</td>
<td>154</td>
</tr>
<tr>
<td>27.7.1.</td>
<td>Example about controlling the bounding box</td>
<td>155</td>
</tr>
<tr>
<td>27.8.</td>
<td>Reverse clip: \texttt{\tkzreversclip}</td>
<td>155</td>
</tr>
<tr>
<td>27.8.1.</td>
<td>Example with \texttt{\tkzClipPolygon[out]}</td>
<td>155</td>
</tr>
</tbody>
</table>
V. Marking

27.1. Mark a segment \tkzMarkSegment

27.1.1. Several marks

27.1.2. Use of mark

27.2. Marking segments \tkzMarkSegments

27.2.1. Marks for an isosceles triangle

27.3. Another marking

27.4. Mark an arc \tkzMarkArc

27.4.1. Several marks

27.5. Mark an angle mark : \tkzMarkAngle

27.5.1. Example with mark = x and with mark =

27.6. Marking a right angle: \tkzMarkRightAngle

27.6.1. Example of marking a right angle

27.6.2. Example of marking a right angle, german style

27.6.3. Mix of styles

27.6.4. Full example

27.6.5. \tkzMarkRightAngles

27.7. Angles Library

27.7.1. Angle with Ti\kZ

VI. Labelling

28.1. Label for a point \tkzLabelPoint

28.1.1. Example with \tkzLabelPoint

28.1.2. Label and reference

28.2. Add labels to points \tkzLabelPoints

28.2.1. Example with \tkzLabelPoints

28.3. Automatic position of labels \tkzAutoLabelPoints

28.3.1. Label for points with \tkzAutoLabelPoints

29. Label for a segment

29.1. First example

29.1.1. Example : blackboard

29.1.2. Labels and option : swap

29.1.3. Labels for an isosceles triangle

30. Add labels on a straight line \tkzLabelLine

30.1. Label at an angle : \tkzLabelAngle

30.1.1. Example author js bibra stackexchange

30.1.2. With pos

30.1.3. pos and \tkzLabelAngles

30.2. Giving a label to a circle

30.2.1. Example

31. Label for an arc

31.1. Label on arc
VII. Complements 172

32. Using the compass 173
 32.1. Main macro \tkzCompass 173
 32.1.1. Option \texttt{length} 173
 32.1.2. Option \texttt{delta} 173
 32.2. Multiple constructions \tkzCompasss 173
 32.2.1. Use \tkzCompasss 174

33. The Show 174
 33.1. Show the constructions of some lines \tkzShowLine 174
 33.1.1. Example of \tkzShowLine and \texttt{parallel} 174
 33.1.2. Example of \tkzShowLine and \texttt{perpendicular} 175
 33.1.3. Example of \tkzShowLine and \texttt{bisector} 175
 33.1.4. Example of \tkzShowLine and \texttt{mediator} 175
 33.2. Constructions of certain transformations \tkzShowTransformation 175
 33.2.1. Example of the use of \tkzShowTransformation 176
 33.2.2. Another example of the use of \tkzShowTransformation 176

34. Protractor 177
 34.1. The macro \tkzProtractor 177
 34.1.1. The circular protractor 177
 34.1.2. The circular protractor, transparent and returned 178

35. Miscellaneous tools and mathematical tools 178
 35.1. Duplicate a segment 178
 35.1.1. Use of \tkzDuplicateSegment 178
 35.1.2. Proportion of gold with \tkzDuplicateSegment 179
 35.1.3. Golden triangle or sublime triangle 179
 35.2. Segment length \tkzCalcLength 179
 35.2.1. Compass square construction 180
 35.2.2. Example 180
 35.3. Transformation from pt to cm or cm to pt 180
 35.4. Change of unit 181
 35.5. Get point coordinates 181
 35.5.1. Coordinate transfer with \tkzGetPointCoord 181
 35.5.2. Sum of vectors with \tkzGetPointCoord 181
 35.6. Swap labels of points 182
 35.6.1. Use of \tkzSwapPoints 182
 35.7. Dot Product 182
 35.7.1. Simple example 183
 35.7.2. Cocyclic points 183
 35.8. Power of a point with respect to a circle 184
 35.8.1. Power from the radical axis 184
 35.9. Radical axis 184
 35.9.1. Two circles disjointed 185
 35.10. Two intersecting circles 185
 35.11. Two externally tangent circles 185
 35.12. Two circles tangent internally 186
 35.12.1. Three circles 186
 35.13. \texttt{tkzIsLinear}, \texttt{tkzIsOrtho} 186
 35.13.1. Use of \texttt{tkzIsOrtho} and \texttt{tkzIsLinear} 187
VIII. Working with style

36. Predefined styles

37. Points style

37.1. Use of \texttt{\texttt{tkzSetUpPoint}}

37.1.1. Global style or local style

37.1.2. Local style

37.1.3. Style and scope \texttt{tkzSetUpPoint}

37.1.4. Simple example with \texttt{tkzSetUpPoint}

37.1.5. Use of \texttt{tkzSetUpPoint} inside a group

38. Lines style

38.1. Use of \texttt{\texttt{tkzSetUpLine}}

38.1.1. Change line width

38.1.2. Change style of line

38.1.3. Example 3: extend lines

39. Arc style

39.1. The macro \texttt{\texttt{tkzSetUpArc}}

39.1.1. Use of \texttt{\texttt{tkzSetUpArc}}

40. Compass style, configuration macro \texttt{\texttt{tkzSetUpCompass}}

40.1. The macro \texttt{\texttt{tkzSetUpCompass}}

40.1.1. Use of \texttt{\texttt{tkzSetUpCompass}}

40.1.2. Use of \texttt{\texttt{tkzSetUpCompass}} with \texttt{\texttt{tkzShowLine}}

41. Label style

41.1. The macro \texttt{\texttt{tkzSetUpLabel}}

41.1.1. Use of \texttt{\texttt{tkzSetUpLabel}}

42. Own style

42.1. The macro \texttt{\texttt{tkzSetUpStyle}}

42.1.1. Use of \texttt{\texttt{tkzSetUpStyle}}

43. How to use arrows

43.1. Arrows at endpoints on segment, ray or line

43.1.1. Scaling an arrow head

43.1.2. Using vector style

43.2. Arrows on middle point of a line segment

43.2.1. In a parallelogram

43.2.2. A line parallel to another one

43.2.3. Arrow on a circle

43.3. Arrows on all segments of a polygon

43.3.1. Arrow on each segment with \texttt{\texttt{tkz arrows}}

43.3.2. Using \texttt{\texttt{tkz arrows}} with a circle

IX. Examples

44. Different authors

44.1. Code from Andrew Swan

44.2. Example: Dimitris Kapeta

44.3. Example : John Kitzmiller

44.4. Example 1: from Indonesia
Part I.

General survey: a brief but comprehensive review
News and compatibility

0.1. With 4.2 version

Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling. Now the definition macros are isolated, it will be easier to introduce a phase of coordinate calculations using **Lua**.

Here are some of the changes.

- I recently discovered a problem when using the "scale" option. When plotting certain figures with certain tools, extensive use of `pgfmathreciprocal` involves small computational errors but can add up and render the figures unfit. Here is how to proceed to avoid these problems:
 1. On my side I introduced a patch proposed by Muzimuzhi that modifies `pgfmathreciprocal`;
 2. Another idea proposed by Muzimuzhi is to pass as an option for the `tikzpicture` environment this `/pgf/fpu/install only={reciprocal}` after loading of course the `fpu` library;
 3. I have in the methods chosen to define my macros tried to avoid as much as possible the use of `pgfmathreciprocal`;
 4. There is still a foolproof method which consists in avoiding the use of `scale = \ldots`. It's quite easy if, like me, you only work with fixed points fixed at the beginning of your code. The size of your figure depends only on these fixed points so you just have to adapt the coordinates of these.

- Now \texttt{\textbackslash tkzDefCircle} gives two points as results: the center of the circle and a point of the circle. When a point of the circle is known, it is enough to use \texttt{\textbackslash tkzGetPoint} or \texttt{\textbackslash tkzGetFirstPoint} to get the center, otherwise \texttt{\textbackslash tkzGetPoints} will give you the center and a point of the circle. You can always get the length of the radius with \texttt{\textbackslash tkzGetLength}. I wanted to favor working with nodes and banish the appearance of numbers in the code.

- In order to isolate the definitions, I deleted or modified certain macros which are: \texttt{\textbackslash tkzDrawLine}, \texttt{\textbackslash tkzDrawTriangle}, \texttt{\textbackslash tkzDrawCircle}, \texttt{\textbackslash tkzDrawSemiCircle} and \texttt{\textbackslash tkzDrawRectangle};

Thus \texttt{\textbackslash tkzDrawSquare(A,B)} becomes \texttt{\textbackslash tkzDefSquare(A,B)\textbackslash tkzGetPoints{C}{D} then \textbackslash tkzDrawPolygon(A,B,C,D)};

If you want to draw a circle, you can't do so \texttt{\textbackslash tkzDrawCircle[R](A,1)}. First you have to define the point through which the circle passes, so you have to do \texttt{\textbackslash tkzDefCircle[R](A,1)\textbackslash tkzGetPoint{a}} and finally \texttt{\textbackslash tkzDrawCircle(A,a)}. Another possibility is to define a point on the circle \texttt{\textbackslash tkzDefShiftPoint[A](1,0){a}};

- The following macros \texttt{\textbackslash tkzDefCircleBy[orthogonal through]} and \texttt{\textbackslash tkzDefCircleBy[orthogonal from]} become \texttt{\textbackslash tkzDefCircle[orthogonal through]} and \texttt{\textbackslash tkzDefCircle[orthogonal from]};

- \texttt{\textbackslash tkzDefLine[euler](A,B,C)} is a macro that allows you to obtain the line of Euler when possible. \texttt{\textbackslash tkzDefLine[altitude]...} is possible again, as well as \texttt{\textbackslash tkzDefLine[tangent at=A](0)} and \texttt{\textbackslash tkzDefLine[tangent from=P](0,A)} which did not works;

- \texttt{\textbackslash tkzDefTangent} is replaced by \texttt{\textbackslash tkzDelLine[tangent from = \ldots] or\textbackslash tkzDelLine[tangent at = \ldots]}

- I added the macro \texttt{\textbackslash tkzPicAngle[tikz options](A,B,C)} for those who prefer to use TikZ.

- The order of the arguments of the macro \texttt{\textbackslash tkzDefPointOnCircle} has changed: now it is center, angle and point or radius. I have added two options for working with radians which are \texttt{through in rad} and \texttt{R in rad}.

\texttt{tkz-euclide} \\
AlterMundus
- I added the option `reverse` to the arcs paths. This allows to reverse the path and to reverse if necessary the arrows that would be present.

- I have unified the styles for the labels. There is now only `label style` left which is valid for points, segments, lines, circles and angles. I have deleted `label seg style`, `label line style` and `label angle style`.

- I added the macro `tkzFillAngles` to use several angles.

- Correction option `return` with `\tkzProtractor`.

As a reminder, the following changes have been made previously:

- `\tkzDrawMedian`, `\tkzDrawBisector`, `\tkzDrawAltitude`, `\tkzDrawMedians`, `\tkzDrawBisectors` et `\tkzDrawAltitudes` do not exist anymore. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with `\tkzDefSpcTriangle[median]` and then to choose the ones you are going to draw with `\tkzDrawSegments` or `\tkzDrawLines`.

- `\tkzDrawTriangle` has been deleted. `\tkzDrawTriangle[equilateral]` was handy but it is better to get the third point with `\tkzDefTriangle[equilateral]` and then draw with `\tkzDrawPolygon`; idem for `\tkzDrawSquare` and `\tkzDrawGoldRectangle`.

- The circle inversion was badly defined so I rewrote the macro. The input arguments are always the center and a point of the circle, the output arguments are the center of the image circle and a point of the image circle or two points of the image line if the antecedent circle passes through the pole of the inversion. If the circle passes the inversion center, the image is a straight line, the validity of the procedure depends on the choice of the point on the antecedent circle.

- Correct allocation for gold sublime and euclide triangles;

- I added the option "next to" for the intersections LC and CC;

- Correction option isocèle right;

- Correction of the macro `\tkzMarkAngle`;

- `\tkzDefMidArc(O,A,B)` gives the middle of the arc center O from A to B;

- Good news: Some useful tools have been added. They are present on an experimental basis and will undoubtedly need to be improved;

- The options "orthogonal from and through" depend now of `\tkzDefCircleBy`

 1. `\tkzDotProduct(A,B,C)` computes the scalar product in an orthogonal reference system of the vectors A, B and A, C.

 `\tkzDotProduct(A,B,C)=aa'+bb'` if \(\text{vec\{AB\}} = (a, b) \) and \(\text{vec\{AC\}} = (a', b') \)

 2. `\tkzPowerCircle(A)(B,C)` power of point A with respect to the circle of center B passing through C;

 3. `\tkzDefRadicalAxis(A,B)(C,D)` Radical axis of two circles of center A and C;

 4. Some tests: `\tkzIsOrtho(A,B,C)` and `\tkzIsLinear(A,B,C)` The first indicates whether the lines \((A,B) \) and \((A,C) \) are orthogonal. The second indicates whether the points A, B and C are aligned;
\tkzIsLinear(A,B,C) if A, B, C are aligned then \tkzLineartrue you can use \iftkzLinear (idem for \tkzIsOrtho);

5. A style for vectors has been added that you can of course modify \tikzset{vector style/.style={>=Latex,->}};

6. Now it's possible to add an arrow on a line or a circle with the option \tkzArrow.

\subsection{Changes with previous versions}

- I remind you that an important novelty is the recent replacement of the \texttt{fp} package by \texttt{xfp}. This is to improve the calculations a little bit more and to make it easier to use;

- First of all, you don't have to deal with Ti\texttt{kZ} the size of the bounding box. Early versions of \texttt{tkz-euclide} did not control the size of the bounding box. The bounding box is now controlled in each macro (hopefully) to avoid the use of \texttt{\tkzInit} followed by \texttt{\tkzClip};

- With \texttt{tkz-euclide} loads all objects, so there's no need to place \texttt{\usetkzobj{all}};

- Added macros for the bounding box: \texttt{\tkzSaveBB \tkzClipBB} and so on;

- Logically most macros accept Ti\texttt{kZ} options. So I removed the "duplicate" options when possible thus the "label options" option is removed;

- The unit is now the cm;

- \texttt{\tkzCalcLength \tkzGetLength} gives result in cm;

- \texttt{\tkzMarkArc} and \texttt{\tkzLabelArc} are new macros;

- Now \texttt{\tkzClipCircle} and \texttt{\tkzClipPolygon} have an option \texttt{out}. To use this option you must have a Bounding Box that contains the object on which the Clip action will be performed. This can be done by using an object that encompasses the figure or by using the macro \texttt{\tkzInit};

- The options \texttt{end} and \texttt{start} which allowed to give a label to a straight line are removed. You now have to use the macro \texttt{\tkzLabelLine};

- Introduction of the libraries \texttt{quotes} and \texttt{angles}; it allows to give a label to a point, even if I am not in favour of this practice;

- The notion of vector disappears, to draw a vector just pass "->" as an option to \texttt{\tkzDrawSegment};

- \texttt{\tkzDefIntSimilitudeCenter} and \texttt{\tkzDefExtSimilitudeCenter} do not exist anymore, now you need to use \texttt{\tkzDefSimilitudeCenter[int]} or \texttt{\tkzDefSimilitudeCenter[ext]};

- \texttt{\tkzDefRandPointOn} is replaced by \texttt{\tkzGetRandPointOn};

- An option of the macro \texttt{\tkzDefTriangle} has changed, in the previous version the option was "euclide" with an "e". Now it's "euclid";

- Random points are now in \texttt{tkz-euclide} and the macro \texttt{\tkzGetRandPointOn} is replaced by \texttt{\tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \texttt{\tkzGetPoint};
\section*{1. Installation}

New macros have been added: \texttt{\tkzDrawSemiCircles, \tkzDrawPolygons, \tkzDrawTriangles};

Option "isosceles right" is a new option of the macro \texttt{\tkzDefTriangle};

Appearance of the macro \texttt{\usetkztool} which allows to load new "tools";

The styles can be modified with the help of the following macros: \texttt{\tkzSetUpPoint, \tkzSetUpLine, \tkzSetUpArc, \tkzSetUpCompass, \tkzSetUpLabel} and \texttt{\tkzSetUpStyle}. The last one allows you to create a new style.

\section*{1. Installation}

\texttt{tkz-euclide} is on the server of the CTAN\footnote{\texttt{tkz-euclide} is part of TeXLive and \texttt{tlmgr} allows you to install them. This package is also part of MiKTeX under Windows.}. If you want to test a beta version, just put the following files in a texmf folder that your system can find. You will have to check several points:

The \texttt{tkz-euclide} folder must be located on a path recognized by \texttt{latex}.

The \texttt{tkz-euclide} uses \texttt{xfp}.

You need to have PGF installed on your computer. \texttt{tkz-euclide} use several libraries of Ti\textit{kZ}

angles, arrows, arrows.meta, calc, decorations, decorations.markings, decorations.pathreplacing, decorations.shapes, decorations.text, decorations.pathmorphing, intersections, math, plotmarks, positioning, quotes, shapes.misc, through

This documentation and all examples were obtained with \texttt{lualatex} but \texttt{pdflatex} or \texttt{xelatex} should be suitable.
2. Presentation and Overview

\begin{tikzpicture}[scale=.25]
\tkzDefPoints{0/0/A,12/0/B,6/12*sind(60)/C}
\foreach \density in {20,30,...,240}{
\tkzDrawPolygon[fill=teal!\density](A,B,C)
\pgfnodealias{X}{A}
\tkzDefPointWith[linear,K=.15](A,B) \tkzGetPoint{A}
\tkzDefPointWith[linear,K=.15](B,C) \tkzGetPoint{B}
\tkzDefPointWith[linear,K=.15](C,X) \tkzGetPoint{C}}
\end{tikzpicture}

2.1. Why \texttt{tkz-euclide}?

My initial goal was to provide other mathematics teachers and myself with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. Of course, \texttt{tkz-euclide} is for math teachers who use \LaTeX and makes it possible to easily create correct drawings by means of \LaTeX.

It appeared that the simplest method was to reproduce the one used to obtain construction by hand. To describe a construction, you must, of course, define the objects but also the actions that you perform. It seemed to me that syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of \LaTeX. The objects, of course, are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label.

The syntax is perhaps too verbose but it is, I believe, easily accessible. As a result, the students like teachers were able to easily access this tool.

2.2. Ti\texttt{k}Z vs \texttt{tkz-euclide}

I love programming with Ti\texttt{k}Z, and without Ti\texttt{k}Z I would never have had the idea to create \texttt{tkz-euclide} but never forget that behind it there is Ti\texttt{k}Z and that it is always possible to insert code from Ti\texttt{k}Z. \texttt{tkz-euclide} doesn't prevent you from using Ti\texttt{k}Z. That said, I don't think mixing syntax is a good thing.

There is no need to compare Ti\texttt{k}Z and \texttt{tkz-euclide}. The latter is not addressed to the same audience as Ti\texttt{k}Z. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want.

The main purpose is to define points to create geometrical figures. \texttt{tkz-euclide} allows you to draw the essential objects of Euclidean geometry from these points but it may be insufficient for some actions like coloring surfaces. In this case you will have to use Ti\texttt{k}Z which is always possible.

Here are some comparisons between Ti\texttt{k}Z and \texttt{tkz-euclide} 4. For this I will use the geometry examples from the PGFManual. The two most important Euclidean tools used by early Greeks to construct different geometrical shapes and angles were a compass and a straightedge. My idea is to allow you to follow step by step a construction that would be done by hand (with compass and straightedge) as naturally as possible.

2.2.1. Book I, proposition I _Euclid's Elements_

\textbf{Book I, proposition I _Euclid's Elements_}

To construct an equilateral triangle on a given finite straight line.

Explanation:

The fourth tutorial of the \textit{PgfManual} is about geometric constructions. T. Tantau proposes to get the drawing with its beautiful tool Ti\texttt{k}Z. Here I propose the same construction with \texttt{tkz-elements}. The color of the Ti\texttt{k}Z code is orange and that of \texttt{tkz-elements} is red.
\usepackage{tikz}
\usetikzlibrary{calc,intersections,through,backgrounds}
\usepackage{tkz-euclide}

How to get the line AB? To get this line, we use two fixed points.

\coordinate [label=left:\$A\$] (A) at (0,0);
\coordinate [label=right:\$B\$] (B) at (1.25,0.25);
\draw (A) -- (B);
\tkzDefPoint(0,0){A}
\tkzDefPoint(1.25,0.25){B}
\tkzDrawSegment(A,B)
\tkzLabelPoint[left](A){A}
\tkzLabelPoint[right](B){B}

We want to draw a circle around the points A and B whose radius is given by the length of the line AB.

\draw let \p1 = ($ (B) - (A) $), \n2 = {veclen(\x1,\y1)} in
(A) circle (\n2)
(B) circle (\n2);
\tkzDrawCircles(A,B B,A)

The intersection of the circles \mathcal{D} and \mathcal{E}

\draw [name path=A--B] (A) -- (B);
node (D) [name path=D,draw,circle through=(B),label=left:\$D\$] at (A) {};
node (E) [name path=E,draw,circle through=(A),label=right:\$E\$] at (B) {};
path [name intersections={of=D and E, by={\[label=above:\$C\$\$C'\]\$C'$}}];
draw [name path=C--C',red] (C) -- (C');
path [name intersections={of=A--B and C--C', by=F}];
node [fill=red,inner sep=1pt,label=-45:F] at (F) {};
\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{X}

How to draw points:
\foreach \point in {A,B,C}
\fill [black,opacity=.5] (\point) circle (2pt);
\tkzDrawPoints[fill=gray,opacity=.5](A,B,C)

2.2.2. Complete code with tkz-euclide

We need to define colors
\colorlet{input}{red!80!black}
\colorlet{output}{red!70!black}
\colorlet{triangle}{orange!40}
2. Presentation and Overview

2.2.3. Book I, Proposition II _Euclid's Elements_

To place a straight line equal to a given straight line with one end at a given point.

Explanation

In the first part, we need to find the midpoint of the straight line AB. With TikZ we can use the calc library

\begin{tikzpicture}
\node (A) at (0,0) [label=left:A] {};
\node (B) at (1.25,0.25) [label=right:B] {};
\draw (A) -- (B);
\node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\end{tikzpicture}

With\texttt{tkz-euclide} we have a macro $\texttt{tkzDefMidPoint}$, we get the point X with $\texttt{tkzGetPoint}$ but we don't need this point to get the next step.
Then we need to construct a triangle equilateral. It’s easy with \texttt{tkz-euclide}. With TikZ you need some effort because you need to use the midpoint \(X\) to get the point \(D\) with trigonometry calculation.

\begin{verbatim}
\node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\node [fill=red,inner sep=1pt,label=above:D] (D) at ($ (X) ! {sin(60)*2} ! 90:(B) $) {};
draw (A) -- (D) -- (B);
\end{verbatim}

We can draw the triangle at the end of the picture with

\begin{verbatim}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{D}
\end{verbatim}

We can place the points \(E\) and \(F\) at the end of the picture. We don't need them now.

Intersecting a Line and a Circle: here we search the intersection of the circle around \(B\) through \(C\) and the line \(DB\). The infinite straight line \(DB\) intercepts the circle but with TikZ we need to extend the lines DB and that can be done using partway calculations. We get the point \(F\) and \(BF\) or \(DF\) intercepts the circle

\begin{verbatim}
\node (H) [label=135:H,draw,circle through=(C)] at (B) {};
\path let \p1 = ($ (B) - (C) $) in
cordinate [label=left:G] (G) at ($ (B) ! veclen(\x1,\y1) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);
\end{verbatim}

Like the intersection of two circles, it’s easy to find the intersection of a line and a circle with \texttt{tkz-euclide}. We don’t need \(F\)

\begin{verbatim}
\tkzInterLC(B,D)(B,C)\tkzGetFirstPoint{G}
\end{verbatim}

There are no more difficulties. Here the final code with some simplications. We draw the circle \(\mathcal{K}\) with center \(D\) and passing through \(G\). It intersects the line \(AD\) at point \(L\). \(AL = BC\).

\begin{verbatim}
\tkzDrawCircle(D,G)
\tkzInterLC(D,A)(D,G)\tkzGetSecondPoint{L}
\end{verbatim}
2.3. \texttt{tkz-euclide4 vs tkz-euclide3}

Now I am no longer a Mathematics teacher, and I only spend a few hours studying geometry. I wanted to avoid multiple complications by trying to make \texttt{tkz-euclide} independent of \texttt{tkz-base}. Thus was born \texttt{tkz-euclide4}. The latter is a simplified version of its predecessor. The macros of \texttt{tkz-euclide3} have been retained. The unit is now \texttt{cm}. If you need some macros from \texttt{tkz-base}, you may need to use the \texttt{tkzInit}.

2.4. How to use the \texttt{tkz-euclide} package?

2.4.1. Let's look at a classic example

In order to show the right way, we will see how to build an equilateral triangle. Several possibilities are open to us, we are going to follow the steps of Euclid.

- First of all, you have to use a document class. The best choice to test your code is to create a single figure with the class \texttt{standalone}.

\begin{verbatim}
\documentclass{standalone}
\end{verbatim}

- Then load the \texttt{tkz-euclide} package:

\begin{verbatim}
\usepackage{tkz-euclide}
\end{verbatim}

You don't need to load \LaTeX{} because the \texttt{tkz-euclide} package works on top of TikZ and loads it.

- Start the document and open a TikZ picture environment:

\begin{verbatim}
\begin{document}
\begin{tikzpicture}
\end{verbatim}

- Now we define two fixed points:

\begin{verbatim}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,2){B}
\end{verbatim}
– Two points define two circles, let’s use these circles:
circle with center A through B and circle with center B through A. These two circles have two points in common.
\tkzInterCC(A,B)(B,A)

We can get the points of intersection with
\tkzGetPoints{C}{D}
– All the necessary points are obtained, we can move on to the final steps including the plots.
\tkzDrawCircles[gray,dashed](A,B B,A)
\tkzDrawPolygon(A,B,C)% The triangle
– Draw all points A, B, C and D:
\tkzDrawPoints(A,...,D)
– The final step, we print labels to the points and use options for positioning:
\tkzLabelSegments[swap](A,B){c}
\tkzLabelPoints(A,B,D)
\tkzLabelPoints[above](C)
– We finally close both environments
\end{tikzpicture}
\end{document}
– The complete code
\begin{tikzpicture}[scale=.5]
 % fixed points
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(5,2){B}
 \tkzDefPoint(5,0){C}
 \tkzDefPoint(7,2){D}
 % calculus
 \tkzInterCC(A,B)(B,A)
 \tkzInterCC(A,C)(C,A)
 \tkzInterCC(B,D)(D,B)
 \tkzGetPoints{C}{D}
 % drawings
 \tkzDrawCircles(A,B B,A)
 \tkzDrawCircles(B,C C,A)
 \tkzDrawCircles(A,D D,B)
 \tkzDrawPolygon(A,B,C)
 % marking
 \tkzMarkSegments[mark=s||](A,B B,C C,A)
 \tkzMarkSegments[mark=s||](B,D D,A A,C)
 % labelling
 \tkzLabelSegments[swap](A,B){c}
 \tkzLabelPoints(A,B,D)
 \tkzLabelPoints[above](C)
 \end{tikzpicture}
2.4.2. Part I: golden triangle

Let's analyze the figure

1. CBD and DBE are isosceles triangles;
2. BC = BE and (BD) is a bisector of the angle CBE;
3. From this we deduce that the CBD and DBE angles are equal and have the same measure α

\[
\widehat{BAC} + \widehat{ABC} + \widehat{BCA} = 180^\circ \text{ in the triangle } BAC
\]
\[
3\alpha + \widehat{BCA} = 180^\circ \text{ in the triangle } CBD
\]
then
\[
\alpha + 2\widehat{BCA} = 180^\circ
\]
or
\[
\widehat{BCA} = 90^\circ - \alpha/2
\]
4. Finally
\[
\widehat{CBD} = \alpha = 36^\circ
\]
the triangle CBD is a "golden" triangle.

How construct a golden triangle or an angle of 36°?

1. We place the fixed points C and D. \texttt{\tkzDefPoint(0,0){C} and \tkzDefPoint(4,0){D}};
2. We construct a square CDef and we construct the midpoint m of [Cf];
 We can do all of this with a compass and a rule;
3. Then we trace an arc with center m through e. This arc cross the line (Cl) at n;
4. Now the two arcs with center C and D and radius Cn define the point B.
After building the golden triangle \(BCD \), we build the point \(A \) by noticing that \(BD = DA \). Then we get the point \(E \) and finally the point \(F \). This is done with already intersections of defined objects (line and circle).

2.4.3. Part II: two others methods with golden and euclid triangle

\texttt{tkz-euclide} knows how to define a "golden" or "euclidean" triangle. We can define \(BCD \) and \(BCA \) like gold triangles.

Here is a final method that uses rotations:
2. Presentation and Overview

2.4.4. Complete but minimal example

A unit of length being chosen, the example shows how to obtain a segment of length \sqrt{a} from a segment of length a, using a ruler and a compass.

IB = a, AI = 1
\begin{tikzpicture} [scale=1,ra/.style={fill=gray!20}]
% fixed points
\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){I}
% calculation
\tkzDefPointBy[homothety=center A ratio 10](I) \tkzGetPoint{B}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
\tkzInterLC(I,H)(M,B) \tkzGetFirstPoint{C}
\tkzDrawSegment[style=orange](I,C)
\tkzDrawArc(M,B)(A)
\tkzDrawSegment[dim={1,-16pt,}](A,I)
\tkzDrawSegment[dim={$a/2$,-16pt,}](M,B)
\tkzDrawSegment[dim={$a/2$,-10pt,}](I,M)
\tkzMarkRightAngle[ra](A,I,C)
\tkzDrawPoints(I,A,B,C,M)
\tkzLabelPoint[left](A){$A(0,0)$}
\tkzLabelPoints[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$}
\tkzLabelPoints[above right](I,M)
\tkzLabelPoints[above left](C)
\tkzLabelPoint[right](B){$B(10,0)$}
\tkzLabelSegment[right=4pt](I,C){$\sqrt{a^2}=a \ (a>0)$}
\end{tikzpicture}

Comments

– The Preamble

Let us first look at the preamble. If you need it, you have to load xcolor before \texttt{tkz-euclide}, that is, before TikZ. TikZ may cause problems with the active characters, but... provides a library in its latest version that’s supposed to solve these problems babel.

\documentclass[standalone] % or another class
% \usepackage{xcolor} % before tikz or tkz-euclide if necessary
\usepackage{tkz-euclide} % no need to load TikZ
% \usetikzlibrary{babel} if there are problems with the active characters

The following code consists of several parts:

– Definition of fixed points: the first part includes the definitions of the points necessary for the construction, these are the fixed points. The macros \texttt{tkzInit} and \texttt{tkzClip} in most cases are not necessary.

\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){I}

– The second part is dedicated to the creation of new points from the fixed points; a \texttt{B} point is placed at 10 cm from \texttt{A}. The middle of \texttt{AB} is defined by \texttt{M} and then the orthogonal line to the \texttt{AB} line is searched for at the \texttt{I} point. Then we look for the intersection of this line with the semi-circle of center \texttt{M} passing through \texttt{A}.

\tkzDefPointBy[homothety=center A ratio 10](I) \tkzGetPoint{B}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{H}
\tkzInterLC(I,H)(M,B) \tkzGetFirstPoint{C}
3. The Elements of tkz code

To work with my package, you need to have notions of L\LaTeX as well as Ti\kern. In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with \texttt{tkz-euclide}.

3.1. Objects and language

The primitive objects are points. You can refer to a point at any time using the name given when defining it. (it is possible to assign a different name later on).

To get new points you will use macros. \texttt{tkz-euclide} macros have a name beginning with \texttt{tkz}. There are four main categories starting with: \texttt{tkzDef} \ldots \texttt{tkzDraw} \ldots \texttt{tkzMark} \ldots and \texttt{tkzLabel} \ldots. The used points are passed as parameters between parentheses while the created points are between braces.

The code of the figures is placed in an environment \texttt{tikzpicture}

Contrary to Ti\kern, you should not end a macro with ". We thus lose the important notion which is the path. However, it is possible to place some code between the macros \texttt{tkz-euclide}.

Among the first category, \texttt{tkzDefPoint} allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro \texttt{tkzDefTriangle}.

This macro makes it possible to associate to a pair of points a third point in order to define a certain triangle \texttt{tkzDefTriangle}(A,B). The obtained point is referenced \texttt{tkzPointResult} and it is possible to choose another reference with \texttt{tkzGetPoint\{C\}} for example.

\texttt{tkzDefTriangle[euclid](A,B) \ tkzGetPoint\{C\}}

Parentheses are used to pass arguments. In \texttt{(A,B)} A and B are the points with which a third will be defined. However, in \texttt{\{C\}} we use braces to retrieve the new point.

In order to choose a certain type of triangle among the following choices: \textit{equilateral}, \textit{isosceles right}, \textit{half}, \textit{pythagoras}, \textit{school}, \textit{golden} or \textit{sublime}, \textit{euclid}, \textit{gold}, \textit{cheops}... and \textit{two angles} you just have to choose between hooks, for example:
3. The Elements of \texttt{tkz} code

3.2. Notations and conventions

I deliberately chose to use the geometric French and personal conventions to describe the geometric objects represented. The objects defined and represented by \texttt{tkz-euclide} are points, lines and circles located in a plane. They are the primary objects of Euclidean geometry from which we will construct figures.

According to \textit{Euclid}, these figures will only illustrate pure ideas produced by our brain. Thus a point has no dimension and therefore no real existence. In the same way the line has no width and therefore no existence in the real world. The objects that we are going to consider are only representations of ideal mathematical objects. \texttt{tkz-euclide} will follow the steps of the ancient Greeks to obtain geometrical constructions using the ruler and the compass.

Here are the notations that will be used:

- The points are represented geometrically either by a small disc or by the intersection of two lines (two straight lines, a straight line and a circle or two circles). In this case, the point is represented by a cross.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B}
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}

or else

\begin{tikzpicture}
\tkzSetUpPoint[shape=cross, color=red]
\tkzDefPoints{0/0/A,4/2/B}
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}

The existence of a point being established, we can give it a label which will be a capital letter (with some exceptions) of the Latin alphabet such as \(A\), \(B\) or \(C\). For example:

- \(O\) is a center for a circle, a rotation, etc.;
- \(M\) defined a midpoint;
- \(H\) defined the foot of an altitude;
- \(P'\) is the image of \(P\) by a transformation.
It is important to note that the reference name of a point in the code may be different from the label to designate it in the text. So we can define a point A and give it as label P. In particular the style will be different, point A will be labeled A.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDrawPoints(A)
\tkzLabelPoint(A){P}
\end{tikzpicture}

Exceptions: some points such as the middle of the sides of a triangle share a characteristic, so it is normal that their names also share a common character. We will designate these points by M_A, M_B and M_C or M_A, M_B and M_C.

In the code, these points will be referred to as: M_A, M_B and M_C.

Another exception relates to intermediate construction points which will not be labelled. They will often be designated by a lowercase letter in the code.

– The line segments are designated by two points representing their ends in square brackets: [AB].

– The straight lines are in Euclidean geometry defined by two points so A and B define the straight line $\langle AB \rangle$. We can also designate this straight line using the Greek alphabet and name it $\langle \delta \rangle$ or $\langle \Delta \rangle$. It is also possible to designate the straight line with lowercase letters such as d and d'.

– The semi-straight line is designated as follows $\langle AB \rangle$.

– Relation between the straight lines. Two perpendicular $\langle AB \rangle$ and $\langle CD \rangle$ lines will be written $\langle AB \rangle \perp \langle CD \rangle$ and if they are parallel we will write $\langle AB \rangle \parallel \langle CD \rangle$.

– The lengths of the sides of triangle ABC are AB, AC and BC. The numbers are also designated by a lowercase letter so we will write: $\overline{AB} = c$, $\overline{AC} = b$ and $\overline{BC} = a$. The letter a is also used to represent an angle, and r is frequently used to represent a radius, d a diameter, l a length, d a distance.

– Polygons are designated afterwards by their vertices so ABC is a triangle, EFGH a quadrilateral.

– Angles are generally measured in degrees (ex 60°) and in an equilateral ABC triangle we will write $\overline{ABC} = \overline{B} = 60^\circ$.

– The arcs are designated by their extremities. For example if A and B are two points of the same circle then \overline{AB}.

– Circles are noted either ‘C’ if there is no possible confusion or ‘C’(O ; A) for a circle with center O and passing through the point A or ‘C’(O ; 1) for a circle with center O and radius 1 cm.

– Name of the particular lines of a triangle: I used the terms bisector, bisector out, mediator (sometimes called perpendicular bisectors), altitude, median and symmedian.

– (x_1,y_1) coordinates of the point A_1, (x_A,y_A) coordinates of the point A.

3.3. Set, Calculate, Draw, Mark, Label

The title could have been: Separation of Calculus and Drawings

When a document is prepared using the \LaTeX system, the source code of the document can be divided into two parts: the document body and the preamble. Under this methodology, publications can be structured, styled and typeset with minimal effort. I propose a similar methodology for creating figures with \texttt{tkz-euclide}.

The first part defines the fixed points, the second part allows the creation of new points. Set and Calculate are the two main parts. All that is left to do is to draw (or fill), mark and label. It is possible that \texttt{tkz-euclide} is insufficient for some of these latter actions but you can use TikZ.
One last remark that I think is important, it is best to avoid introducing coordinates within a code as much as possible. I think that the coordinates should appear at the beginning of the code with the fixed points. Then the use of references is recommended. Most macros have the option `nodes` or `with nodes`.

I also think it's best to define the styles of the different objects from the beginning.

4. About this documentation and the examples

It is obtained by compiling with "lualatex". I use a class `doc.cls` based on `scrartcl`.

Below the list of styles used in the documentation. To understand how to use the styles see the section 36

\tkzSetUpColors[background=white,text=black]
\tkzSetUpCompass[color=orange, line width=.2pt, delta=10]
\tkzSetUpArc[color=gray, line width=2pt]
\tkzSetUpPoint[size=2, color=teal]
\tkzSetUpLine[line width=.2pt, color=teal]
\tkzSetUpStyle[color=orange, line width=2pt]{new}
\tikzset{every picture/.style={line width=2pt}}
\tikzset{label angle style/.append style={color=teal, font=\footnotesize}}
\tikzset{label style/.append style={below, color=teal, font=\scriptsize}}

Some examples use predefined styles like
\n\tikzset{new/.style={color=orange, line width=2pt}}
Part II.

Setting
5. First step: fixed points

The first step in a geometric construction is to define the fixed points from which the figure will be constructed. The general idea is to avoid manipulating coordinates and to prefer to use the references of the points fixed in the first step or obtained using the tools provided by the package. Even if it’s possible, I think it’s a bad idea to work directly with coordinates. Preferable is to use named points.

\texttt{tkz-euclide} uses macros and vocabulary specific to geometric construction. It is of course possible to use the tools of \LaTeX{} but it seems more logical to me not to mix the different syntaxes.

A point in \texttt{tkz-euclide} is a particular "node" for \LaTeX{}. In the next section we will see how to define points using coordinates. The style of the points (color and shape) will not be discussed. You will find some indications in some examples; for more information you can read the following section 3.6.

6. Definition of a point : \texttt{tkzDefPoint} or \texttt{tkzDefPoints}

Points can be specified in any of the following ways:

- Cartesian coordinates;
- Polar coordinates;
- Named points;
- Relative points.

A point is defined if it has a name linked to a unique pair of decimal numbers. Let \((x, y)\) or \((a;d)\) i.e. \((x\text{ abscissa}, y\text{ ordinate})\) or \((a\text{ angle: d distance})\). This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are (ortho)normed with unity equal to 1 cm.

The Cartesian coordinate \((a, b)\) refers to the point \(a\text{ centimeters in the x-direction and } b\text{ centimeters in the y-direction.}\)

A point in polar coordinates requires an angle \(\alpha\), in degrees, and a distance \(d\) from the origin with a dimensional unit by default it’s the cm.

The \texttt{tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on \texttt{coordinate}, a macro of \LaTeX{}. It can use \LaTeX{}-specific options such as \texttt{shift}. If calculations are required then the \texttt{xfp} package is chosen. We can use Cartesian or polar coordinates.

Cartesian coordinates

\begin{tikzpicture}[scale=1]
\tkzInit[xmax=5,ymax=5]
\tkzDrawX[>=latex]
\tkzDrawY[>=latex]
\tkzDefPoints{0/0/O,1/0/I,0/1/J}
\tkzDefPoint(3,4){A}
\tkzDrawPoints(O,A)
\tkzLabelPoint[above](A){\(A_1 (x_1,y_1)\)}
\tkzShowPointCoord[xlabel=x_1, ylabel=y_1](A)
\tkzLabelPoints(O,I)
\tkzLabelPoints[below](J)
\end{tikzpicture}

Polar coordinates

\begin{tikzpicture}[scale=1]
\tkzInit[xmax=5,ymax=5]
\tkzDrawX[>=latex]
\tkzDrawY[>=latex]
\tkzDefPoints{0/0/O,1/0/I,0/1/J}
\tkzDefPoint(40:4){P}
\tkzDrawSegment[dim={d, 16pt,above=6pt}](O,P)
\tkzLabelPoints(O,P)
\tkzDrawPoints[shape=cross](I,J)
\tkzLabelPoints(O,I)
\tkzLabelPoints[below](J)
\end{tikzpicture}
6. Definition of a point: \texttt{tkzDefPoint} or \texttt{tkzDefPoints}

6.1. Defining a named point \texttt{tkzDefPoint}

\begin{verbatim}
\tkzDefPoint[(local options)](⟨x,y⟩){⟨ref⟩} or (⟨α:d⟩){⟨ref⟩}
\end{verbatim}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y)</td>
<td>no default</td>
<td>x and y are two dimensions, by default in cm.</td>
</tr>
<tr>
<td>(α:d)</td>
<td>no default</td>
<td>α is an angle in degrees, d is a dimension</td>
</tr>
<tr>
<td>{ref}</td>
<td>no default</td>
<td>Reference assigned to the point: A, T\textsubscript{a}, P\textsubscript{1} or P\textsubscript{1}</td>
</tr>
</tbody>
</table>

The obligatory arguments of this macro are two dimensions expressed with decimals, in the first case they are two measures of length, in the second case they are a measure of length and the measure of an angle in degrees. Do not confuse the reference with the name of a point. The reference is used by calculations, but frequently, the name is identical to the reference.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>no default</td>
<td>allows you to place a label at a predefined distance</td>
</tr>
<tr>
<td>shift</td>
<td>no default</td>
<td>adds (x,y) or (α:d) to all coordinates</td>
</tr>
</tbody>
</table>

6.1.1. Cartesian coordinates

\begin{verbatim}
\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5] % limits the size of the axes
\tkzDrawX[>=latex]
\tkzDrawY[>=latex]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(0,3){C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}
\end{verbatim}
6. Definition of a point: \tkzDefPoint or \tkzDefPoints

6.1.2. Calculations with xfp

\begin{tikzpicture}[scale=1]
\tkzInit[xmax=4,ymax=4]
\tkzDrawX\tkzDrawY
\tkzDefPoint(-1+2,sqrt(4)){O}
\tkzDefPoint({3*ln(exp(1))},{exp(1)}){A}
\tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B}
\tkzDrawPoints(O,B,A)
\end{tikzpicture}

6.1.3. Polar coordinates

\begin{tikzpicture}
\foreach \an [count=i] in {0,60,...,300}
{ \tkzDefPoint(\an:3){A_\i}}
\tkzDrawPolygon(A_1,A_...,A_6)
\tkzDrawPoints(A_1,A_...,A_6)
\end{tikzpicture}

6.1.4. Relative points

First, we can use the scope environment from TikZ. In the following example, we have a way to define an equilateral triangle.

\begin{tikzpicture}[scale=1]
\begin{scope}[rotate=30]
\tkzDefPoint(2,3){A}
\begin{scope}[shift=(A)]
\tkzDefPoint(90:5){B}
\tkzDefPoint(30:5){C}
\end{scope}
\end{scope}
\tkzDrawPolygon(A,B,C)
\tkzLabelPoints[above](B,C)
\tkzLabelPoints[below](A)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

6.2. Point relative to another: \tkzDefShiftPoint
6. Definition of a point: \texttt{tkzDefPoint} or \texttt{tkzDefPoints}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y)</td>
<td>no default</td>
<td>(x) and (y) are two dimensions, by default in cm.</td>
</tr>
<tr>
<td>((\alpha:d))</td>
<td>no default</td>
<td>(\alpha) is an angle in degrees, (d) is a dimension</td>
</tr>
<tr>
<td>{ref}</td>
<td>no default</td>
<td>Reference assigned to the point: (A), (T_a), (P1) or (P_1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pt]</td>
<td>no default</td>
<td>\texttt{tkzDefShiftPoint}[(A)]{(0:4)}{(B)}</td>
</tr>
</tbody>
</table>

6.2.1. Isosceles triangle

This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex \(A\) and angle at vertex of 30°.

```latex
\begin{tikzpicture}[rotate=-30]
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint\[A\](0:4){B}
\tkzDefShiftPoint\[A\](30:4){C}
\tkzDrawSegments(A,B B,C C,A)
\tkzMarkSegments[mark=\vert]\(A\),\(B\) \(A\),\(C\)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[right](B,C)
\tkzLabelPoints[above left](A)
\end{tikzpicture}
```

6.2.2. Equilateral triangle

Let's see how to get an equilateral triangle (there is much simpler)

```latex
\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint\[A\](30:3){B}
\tkzDefShiftPoint\[A\](-30:3){C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[right](B,C)
\tkzLabelPoints[above left](A)
\tkzMarkSegments[mark=\vert]\(A\),\(B\) \(A\),\(C\) \(B\),\(C\)
\end{tikzpicture}
```

6.2.3. Parallelogram

There's a simpler way

```latex
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(30:3){B}
\tkzDefShiftPointCoord\[B\](10:2){C}
\tkzDefShiftPointCoord\[A\](10:2){D}
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
```
6. Definition of a point: \texttt{tkzDefPoint} or \texttt{tkzDefPoints}

6.3. Definition of multiple points: \texttt{tkzDefPoints}

\begin{center}
\begin{tabular}{|l|c|c|}
\hline
arguments & default & example \\
\hline
\texttt{x}_i/\texttt{y}_i & \texttt{tkzDefPoints}\{B/0,2/2/A}\} & \texttt{tkzDefPoints}\{B/0,2/2/A}\} \\
\texttt{x}_i/\texttt{y}_i & \texttt{tkzDefPoints}\{B/0,2/2/A}\} & \texttt{tkzDefPoints}\{B/0,2/2/A}\} \\
options & default & definition \\
shift & no default & Adds (x,y) or (α:d) to all coordinates \\
\hline
\end{tabular}
\end{center}

6.4. Create a triangle

\begin{center}
\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,4/0/B,4/3/C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}
\end{center}

6.5. Create a square

Note here the syntax for drawing the polygon.

\begin{center}
\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D}
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
\end{center}
Part III.

Calculating
Now that the fixed points are defined, we can with their references using macros from the package or macros that you will create get new points. The calculations may not be apparent but they are usually done by the package. You may need to use some mathematical constants, here is the list of constants defined by the package. You may need to use some mathematical constants, here is the list of constants defined by the package.

7. Auxiliary tools

7.1. Constants

\texttt{tkz-euclide} knows some constants, here is the list:

\begin{verbatim}
\def\tkzPhi{1.618034}
\def\tkzInvPhi{0.618034}
\def\tkzSqrtPhi{1.27202}
\def\tkzSqrTwo{1.414213}
\def\tkzSqrThree{1.7320508}
\def\tkzSqrFive{2.2360679}
\def\tkzSqrTwobyTwo{0.7071065}
\def\tkzPi{3.1415926}
\def\tkzEuler{2.71828182}
\end{verbatim}

7.2. New point by calculation

When a macro of \texttt{tkznameofpack} creates a new point, it is stored internally with the reference \texttt{tkzPointResult}. You can assign your own reference to it. This is done with the macro \texttt{tkzGetPoint}. A new reference is created, your choice of reference must be placed between braces.

\begin{verbatim}
\tkzGetPoint{⟨ref⟩}
\end{verbatim}

If the result is in \texttt{tkzPointResult}, you can access it with \texttt{tkzGetPoint}.

\begin{tabular}{|c|c|c|}
\hline
arguments & default & example \\
\hline
ref & no default & \texttt{tkzGetPoint(M)} see the next example \\
\hline
\end{tabular}

Sometimes you need to get two points. It's possible with

\begin{verbatim}
\tkzGetPoints{⟨ref1⟩}{⟨ref2⟩}
\end{verbatim}

The result is in \texttt{tkzPointFirstResult} and \texttt{tkzPointSecondResult}.

\begin{tabular}{|c|c|c|}
\hline
arguments & default & example \\
\hline
{ref1,ref2} & no default & \texttt{tkzGetPoints(M,N)} It's the case with \texttt{tkzInterCC} \\
\hline
\end{tabular}

If you need only the first or the second point you can also use:

\begin{verbatim}
\tkzGetFirstPoint{⟨ref1⟩}
\end{verbatim}

\begin{tabular}{|c|c|c|}
\hline
arguments & default & example \\
\hline
ref1 & no default & \texttt{tkzGetFirstPoint(M)} \\
\hline
\end{tabular}
8. Special points

Sometimes the results consist of a point and a dimension. You get the point with \texttt{tkzGetPoint} and the dimension with \texttt{tkzGetLength}.

8. Special points

Here are some special points.

8.1. Middle of a segment \texttt{tkzDefMidPoint}

It is a question of determining the middle of a segment.

8.1.1. Use of \texttt{tkzDefMidPoint}

Review the use of \texttt{tkzDefPoint}.

8.2. Golden ratio \texttt{tkzDefGoldenRatio}

From Wikipedia: In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a, b such as $a > b > 0$; $a + b$ is to a as a is to b.

\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,3){A}
\tkzDefPoint(6,2){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{M}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,M)
\tkzLabelPoints[below](A,B,M)
\end{tikzpicture}
8. Special points

\[a + b = \frac{a}{b} = \phi = \frac{1 + \sqrt{5}}{2} \]

One of the two solutions to the equation \(x^2 - x - 1 = 0 \) is the golden ratio \(\phi = \frac{1 + \sqrt{5}}{2} \).

\begin{Verbatim}
\tkzDefGoldenRatio((pt1,pt2))
\end{Verbatim}

arguments default example

\[(pt1,pt2) \quad \text{no default} \quad \tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
AB = a, BC = b and \(\frac{AC}{AB} = \frac{AB}{BC} = \phi \)

8.2.1. Use the golden ratio to divide a line segment

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/C}
\tkzDefMidPoint(A,C) \tkzGetPoint{I}
%\tkzDefPointWith[linear,K=\tkzInvPhi](A,C)
\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
\tkzDrawSegments(A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}

8.2.2. Golden arbelos

\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,10/0/B}
\tkzDefGoldenRatio(A,B) \tkzGetPoint{C}
\tkzDefMidPoint(A,B) \tkzGetPoint{O_1}
\tkzDefMidPoint(A,C) \tkzGetPoint{O_2}
\tkzDefMidPoint(C,B) \tkzGetPoint{O_3}
\tkzDrawSemiCircles[fill=purple!15](O_1,B)
\tkzDrawSemiCircles[fill=teal!15](O_2,C O_3,B)
\end{tikzpicture}

It is also possible to use the following macro.

8.3. Barycentric coordinates with \tkzDefBarycentricPoint

pt\(_1\), pt\(_2\), ..., pt\(_n\) being \(n \) points, they define \(n \) vectors \(\vec{v}_1, \vec{v}_2, ..., \vec{v}_n \) with the origin of the referential as the common endpoint. \(\alpha_1, \alpha_2, ..., \alpha_n \) are \(n \) numbers, the vector obtained by:

\[\frac{\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \cdots + \alpha_n \vec{v}_n}{\alpha_1 + \alpha_2 + \cdots + \alpha_n} \]

defines a single point.

\begin{Verbatim}
\tkzDefBarycentricPoint((pt1=\alpha_1,pt2=\alpha_2,...))
\end{Verbatim}

arguments default definition

\[(pt1=\alpha_1,pt2=\alpha_2,...) \quad \text{no default} \quad \text{Each point has a assigned weight}
You need at least two points. Result in \tkzPointResult.\]
8. Special points

8.3.1. with two points

In the following example, we obtain the barycenter of points A and B with coefficients 1 and 2, in other words:

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$

\begin{tikzpicture}
\tkzDefPoint(2,3){A}
\tkzDefShiftPointCoord[2,3](30:4){B}
\tkzDefBarycentricPoint(A=1,B=2)
\tkzGetPoint{G}
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B,G)
\tkzLabelPoints(A,B,G)
\end{tikzpicture}

8.3.2. with three points

This time M is simply the center of gravity of the triangle. For reasons of simplification and homogeneity, there is also $\texttt{tkzCentroid}$.

\begin{tikzpicture}[scale=.8]
\tkzDefPoints{2/1/A,5/3/B,0/6/C}
\tkzDefBarycentricPoint(A=1,B=1,C=1)
\tkzGetPoint{G}
\tkzDefMidPoint(A,B) \tkzGetPoint{C'}
\tkzDefMidPoint(A,C) \tkzGetPoint{B'}
\tkzDefMidPoint(C,B) \tkzGetPoint{A'}
\tkzDrawPolygon(A,B,C)
\tkzDrawLines[add=0 and 1,new](A,G B,G C,G)
\tkzDrawPoints[new](A',B',C',G)
\tkzDrawPoints(A,B,C)
\tkzLabelPoint[above right](G){G}
\tkzAutoLabelPoints[center=G](A,B,C)
\tkzLabelPoints[above right](A')
\tkzLabelPoints[below](B',C')
\end{tikzpicture}

8.4. Internal and external Similitude Center

The centers of the two homotheties in which two circles correspond are called external and internal centers of similitude. You can use $\texttt{tkzDefIntSimilitudeCenter}$ and $\texttt{tkzDefExtSimilitudeCenter}$ but the next macro is better.

\begin{center}
\begin{tabular}{ll}
$\texttt{tkzDefSimilitudeCenter[\textbf{options}](\langle O,A \rangle)(\langle O',B \rangle)$ or $(\langle O,r \rangle)(\langle O',r' \rangle)$} \\

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>$(O,A)(O',B)$</td>
<td>$r=OA,r'=O'B$</td>
</tr>
<tr>
<td>(pt1,r1)</td>
<td>$(A,1)(B,2)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext</td>
<td>ext</td>
<td>external center</td>
</tr>
<tr>
<td>int</td>
<td>int</td>
<td>internal center</td>
</tr>
<tr>
<td>node</td>
<td>node</td>
<td>Circles are defined by two points: center and point on the circle</td>
</tr>
<tr>
<td>R</td>
<td>node</td>
<td>Circles are defined by the center and the radius</td>
</tr>
</tbody>
</table>
\end{tabular}
\end{center}
8. Special points

8.4.1. Internal and external with node

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,4/-5/A,3/0/B,5/-5/C}
\tkzDefSimilitudeCenter[ext](O,B)(A,C) \tkzGetPoint{I}
\tkzDefSimilitudeCenter[int](O,B)(A,C) \tkzGetPoint{J}
\tkzDefLine[tangent from = I](O,B) \tkzGetPoints{E}{F}
\tkzDefLine[tangent from = I](A,C) \tkzGetPoints{E'}{F'}
\tkzDefLine[tangent from = J](O,B) \tkzGetPoints{G}{H}
\tkzDefLine[tangent from = J](A,C)
\tkzDrawCircles(O,B A,C)
\tkzDrawSegments[add = .5 and .5,new](D,D' E,E')
\tkzDrawSegments[add= 0 and 0.25,new](J,F J,G)
\tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G')
\end{tikzpicture}

8.4.2. D'Alembert Theorem

\begin{tikzpicture}[scale=.6,rotate=90]
\tkzDefPoints{0/0/A,3/0/a,7/-1/B,5.5/-1/b}
\tkzDefPoints{5/-4/C,4.25/-4/c}
\tkzDrawCircles(A,a B,b C,c)
\tkzDefExtSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I}
\tkzDefExtSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J}
\tkzDefExtSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K}
\tkzDefIntSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I'}
\tkzDefIntSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J'}
\tkzDefIntSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K'}
\tkzDrawPoints(A,B,C,I,J,K,I',J',K')
\tkzDrawSegments[new](I,I' J J' I',K K')
\end{tikzpicture}

You can use \texttt{tkzDefBarycentricPoint} to find a homothetic center

\begin{verbatim}
\tkzDefBarycentricPoint(O=r,A=R) \tkzGetPoint{I}
\tkzDefBarycentricPoint(0=-\r,A=\R) \tkzGetPoint{J}
\end{verbatim}
8. Special points

8.4.3. Example with node

\begin{tikzpicture}[rotate=60,scale=.5]
\tkzDefPoints{0/0/A,5/0/C}
\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
\tkzDefSimilitudeCenter(A,B)(C,B) \tkzGetPoint{J}
\tkzDefTangent[from = J](A,B) \tkzGetPoints{F}{G}
\tkzDefTangent[from = J](C,B) \tkzGetPoints{F'}{G'}
\tkzDrawCircles(A,B C,B)
\tkzDrawSegments[add= 0 and 0.25,cyan](J,F J,G)
\tkzDrawPoints(A,J,F,G,F',G')
\end{tikzpicture}
8. Special points

8.5. Harmonic division with \texttt{\textbackslash\texttt{tkzDefHarmonic}}

\begin{verbatim}
\texttt{\textbackslash\texttt{tkzDefHarmonic}}\texttt{[\texttt{options}]}\texttt{(pt1,pt2,pt3)} \texttt{or (pt1,pt2)}
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>both</td>
<td>both</td>
<td>((A,B)) we look for (C) and (D) such that ((A,B;C,D) = -1)</td>
</tr>
<tr>
<td>ext</td>
<td>both</td>
<td>((A,B,C)) we look for (D) such that ((A,B;C,D) = -1)</td>
</tr>
<tr>
<td>int</td>
<td>both</td>
<td>((A,B,D)) we look for (C) such that ((A,B;C,D) = -1)</td>
</tr>
</tbody>
</table>

8.5.1. options ext and int

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,4/0/C}
\tkzDefHarmonic[ext](A,B,C) \tkzGetPoint{J}
\tkzDefHarmonic[int](A,B,J) \tkzGetPoint{I}
\tkzDrawPoints(A,B,I,J)
\tkzDrawLine[add=.5 and 1](A,B)
\tkzLabelPoints(A,B,I,J)
\end{tikzpicture}

8.5.2. Bisector and harmonic division

\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{0/0/A,4/0/C,5/3/X}
\tkzDefLine[bisector](A,X,C) \tkzGetPoint{x}
\tkzInterLL(X,x)(A,C) \tkzGetPoint{B}
\tkzDefHarmonic[ext](A,C,B) \tkzGetPoint{D}
\tkzDrawPolygon(A,X,C)
\tkzDrawSegments(X,B C,D D,X)
\tkzDrawPoints(A,B,C,D,X)
\tkzMarkAngles[mark=s\mid](A,X,B B,X,C)
\tkzMarkRightAngle[size=.4, fill=gray!20, opacity=.3](B,X,D)
\tkzLabelPoints(A,B,C,D)
\tkzLabelPoints[above right](X)
\end{tikzpicture}
8. Special points

8.5.3. **option both**

both is the default option

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B}
\tkzDefHarmonic(A,B,{1/2})\tkzGetPoints{I}{J}
\tkzDrawPoints(A,B,I,J)
\tkzDrawLine[add=1 and .5](A,B)
\tkzLabelPoints(A,B,I,J)
\end{tikzpicture}

8.6. **Equidistant points with **\texttt{tkzDefEquiPoints}****

\begin{verbatim}
\tkzDefEquiPoints[(local options)]((pt1,pt2))
\end{verbatim}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>no default</td>
<td>unordered list of two items</td>
</tr>
<tr>
<td>options</td>
<td></td>
<td>default</td>
</tr>
<tr>
<td>dist</td>
<td>2 (cm)</td>
<td>half the distance between the two points</td>
</tr>
<tr>
<td>from=pt</td>
<td>no default</td>
<td>reference point</td>
</tr>
<tr>
<td>show</td>
<td>false</td>
<td>if true displays compass traces</td>
</tr>
<tr>
<td>/compass/δ</td>
<td>0</td>
<td>compass trace size</td>
</tr>
</tbody>
</table>

This macro makes it possible to obtain two points on a straight line equidistant from a given point.

8.6.1. Using **\texttt{tkzDefEquiPoints}** with options

\begin{tikzpicture}
\tkzSetUpCompass[color=purple,line width=1pt]
\tkzDefPoints{0/1/A,5/2/B,3/4/C}
\tkzDefEquiPoints[from=C,dist=1,show,/tkzcompass/δ=20](A,B)
\tkzGetPoints{E}{H}
\tkzDrawLines[color=blue](C,E C,H A,B)
\tkzLabelPoints(E,H)
\tkzDrawPoints[color=red](E,H)
\tkzLabelPoints(E,H)
\tkzLabelPoints[color=blue](A,B,C)
\end{tikzpicture}

8.7. **Middle of an arc**

\begin{verbatim}
\tkzDefMidArc((pt1,pt2,pt3))
\end{verbatim}

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pt1,pt2,pt3</td>
<td>no default</td>
<td>pt1 is the center, pt2pt3 the arc</td>
</tr>
</tbody>
</table>

\texttt{tkz-euclide} \hfill \textit{AlterMundus}
8. Special points

![Diagram of special points](image_url)
9. Point on line or circle

9.1. Point on a line with \tkzDefPointOnLine

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,10/0/B}
\tkzDefGoldenRatio(A,B)
\tkzDefMidPoint(A,B)
\tkzDefMidPoint(A,C)
\tkzDefMidPoint(C,B)
\tkzDefMidArc(O_3,B,C)
\tkzDefMidArc(O_2,C,A)
\tkzDefMidArc(O_1,B,A)
\tkzDefPointBy[rotation=center C angle 90](B)
\tkzDefFirstPoint{P_2}
\tkzDefInterCC[common=B](P,B)(O_1,B)
\tkzDefInterCC[common=C](P,C)(O_2,C)
\tkzDefInterCC[common=C](Q,C)(O_3,C)
\tkzDefInterLC[near](c,C)(O_1,A)
\tkzDefInterLL(A,P_1)(C,D)
\tkzDefFirstPoint{P_1'}
\tkzDefPointBy[inversion = center A through D](P_2)
\tkzDefPoint{S}
\tkzDefInterLL(B,Q)(A,P)
\tkzDefPoint{o}
\tkzDefPointBy[inversion = center A through D](S)
\tkzDefPoint{S'}
\tkzDrawArc[cyan,delta=0](Q,A)(P_1)
\tkzDrawArc[cyan,delta=0](P,P_1)(B)
\tkzDrawSemiCircles[teal](O_1,B O_2,C O_3,B)
\tkzDrawCircles[new](o,P_2',P_1)
\tkzDrawSegments(A,B)
\tkzDrawSegments[add=0 and .8](B,P_2')
\tkzDrawLines[add=0 and .4](C,D)
\tkzDrawPoints(A,B,C,P,Q,P_3,P_2,P_1,D,P_2',L,S,S')
\tkzLabelPoints(A,B,C,P_3)
\tkzLabelPoints[above](P,Q,P_1)
\tkzLabelPoints[above right](P_2,P_2',D,S')
\tkzLabelPoints[above left](L,S)
\end{tikzpicture}

\begin{tabular}{|c|c|c|}
\hline
arguments & default & definition \\
\hline
pt1,pt2 & no default & Two points to define a line \\
\hline
\end{tabular}
9. Point on line or circle

9.1. Use of option pos

A \begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B}
\tkzDefPointOnLine[pos=1.2](A,B)\tkzGetPoint{P}
\tkzDefPointOnLine[pos=-0.2](A,B)\tkzGetPoint{R}
\tkzDefPointOnLine[pos=0.5](A,B) \tkzGetPoint{S}
\tkzDrawLine[new](A,B)
\tkzDrawPoints(A,B,P)
\tkzDrawPoints(A,B,R)
\tkzDrawPoints(A,B,S)
\tkzLabelPoints(A,B)
\tkzLabelPoint[above](P){pos=1.2}
\tkzLabelPoint[above](R){pos=$-.2$}
\tkzLabelPoint[above](S){pos=$.5$}
\end{tikzpicture}

9.2. Point on a circle with \texttt{\tkzDefPointOnCircle}

The order of the arguments has changed: now it is center, angle and point or radius. I have added two options for working with radians which are \texttt{through in rad} and \texttt{R in rad}.

\begin{verbatim}
\tkzDefPointOnCircle[⟨local options⟩]

\begin{tabular}{|c|c|c|}
\hline
options & default & definition \\
\hline
through & through = center K1 angle 30 point B & \\
R & R = center K1 angle 30 radius \rAp & \\
through in rad & through in rad= center K1 angle pi/4 point B & \\
R in rad & R in rad = center K1 angle pi/6 radius \rAp & \\
\hline
\end{tabular}

\textit{The new order for arguments are: center, angle and point or radius.}
\end{verbatim}

9.2.1. Altshiller's Theorem

The two lines joining the points of intersection of two orthogonal circles to a point on one of the circles met the other circle in two diametrally opposite points. Altshiller p 176

\begin{tikzpicture}[scale=.4]
\tkzDefPoints{0/0/P,5/0/Q,3/2/I}
\tkzDefCircle[orthogonal from=P](Q,I)
\tkzGetFirstPoint{E}
\tkzDrawCircles(P,E Q,E)
\tkzInterCC[common=E](P,E)(Q,E) \tkzGetFirstPoint{F}
\tkzDefPointOnCircle[through = center P angle 80 point E]
\tkzGetPoint{A}
\tkzInterCC[common=E](A,E)(Q,E) \tkzGetFirstPoint{C}
\tkzInterLL(A,F)(C,Q) \tkzGetPoint{D}
\tkzDrawLines[add=0 and .75](P,Q)
\tkzDrawLines[add=0 and 2](A,E)
\tkzDrawSegments(P,E,F,C A,F,C,D)
\tkzDrawPoints(P,Q,E,F,A,C,D)
\tkzLabelPoints(P,Q,F,C,D)
\tkzLabelPoints[above](E,A)
\end{tikzpicture}
9. Point on line or circle

9.2.2. Use of \texttt{tkzDefPointOnCircle}

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,0.8/3/C}
\tkzDefPointOnCircle[R = center B angle 90 radius 1](I)
\tkzDefCircle[circum](A,B,C)(G)
\tkzDefPointOnCircle[through = center G angle 30 point g](J)
\tkzDefCircle[R](B,1)(b)
\tkzDrawCircle[teal](B,b)
\tkzDrawCircle(G,J)
\tkzDrawPoints(A,B,C,G,I,J)
\tkzAutoLabelPoints[center=G](A,B,C,J)
\tkzLabelPoints[below](G,I)
\end{tikzpicture}
10. Special points relating to a triangle

10.1. Triangle center: \texttt{tkzDefTriangleCenter}

\begin{verbatim}
\tkzDefTriangleCenter[(local options)]((A,B,C))
\end{verbatim}

This macro allows you to define the center of a triangle. Be careful, the arguments are lists of three points. This macro is used in conjunction with \texttt{tkzGetPoint} to get the center you are looking for.

You can use \texttt{tkzPointResult} if it is not necessary to keep the results.

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,pt3)</td>
<td>no</td>
<td>\tkzDefTriangleCenterortho</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ortho</td>
<td>circum</td>
<td>intersection of the altitudes</td>
</tr>
<tr>
<td>orthic</td>
<td>circum</td>
<td>...</td>
</tr>
<tr>
<td>centroid</td>
<td>circum</td>
<td>intersection of the medians</td>
</tr>
<tr>
<td>median</td>
<td>circum</td>
<td>...</td>
</tr>
<tr>
<td>circum</td>
<td>circum</td>
<td>circle center circumscribed</td>
</tr>
<tr>
<td>in</td>
<td>circum</td>
<td>center of the circle inscribed in a triangle</td>
</tr>
<tr>
<td>ex</td>
<td>circum</td>
<td>center of a circle exinscribed to a triangle</td>
</tr>
<tr>
<td>euler</td>
<td>circum</td>
<td>center of Euler’s circle</td>
</tr>
<tr>
<td>gergonne</td>
<td>circum</td>
<td>defined with the Contact triangle</td>
</tr>
<tr>
<td>symmedian</td>
<td>circum</td>
<td>Lemoine's point or symmedian center or Grebe's point</td>
</tr>
<tr>
<td>lemoine</td>
<td>circum</td>
<td>...</td>
</tr>
<tr>
<td>grebe</td>
<td>circum</td>
<td>...</td>
</tr>
<tr>
<td>spieker</td>
<td>circum</td>
<td>Spiker circle center</td>
</tr>
<tr>
<td>nagel</td>
<td>circum</td>
<td>Nagel Center</td>
</tr>
<tr>
<td>mittenpunkt</td>
<td>circum</td>
<td>Úr middlespoint</td>
</tr>
<tr>
<td>feuerbach</td>
<td>circum</td>
<td>Feuerbach Point</td>
</tr>
</tbody>
</table>

10.1.1. Option ortho or orthic

The intersection H of the three altitudes of a triangle is called the orthocenter.

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,1){B}
\tkzDefPoint(1,4){C}
\tkzDefTriangleCenter[ortho](B,C,A)
\tkzGetPoint{H}
\tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[new](A,Ha B,Hb C,Hc,A)
\tkzDrawPoints(A,B,C,H)
\tkzDrawPoints(\$H\$)
\tkzMarkRightAngles(A,Ha B B,Hb C C,Hc,A)
\end{tikzpicture}
\end{verbatim}
10. Special points relating to a triangle

10.1.2. Option centroid

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,5/0/B,1/4/C}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDrawPolygon(A,B,C)
\tkzDrawLines[add = 0 and 2/3,new](A,G B,G C,G)
\tkzDrawPoints(A,B,C,G)
\tkzLabelPoint(G){G}
\end{tikzpicture}

10.1.3. Option circum

\begin{tikzpicture}
\tkzDefPoints{0/1/A,3/2/B,1/4/C}
\tkzDefTriangleCenter[circum](A,B,C)
\tkzGetPoint{O}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,B,C,O)
\tkzLabelPoint(O){O}
\end{tikzpicture}

10.1.4. Option in

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A, or the excenter of A. Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system. ([Article on Wikipedia](https://en.wikipedia.org/wiki/Incircle))

We get the center of the inscribed circle of the triangle. The result is of course in \texttt{tkzPointResult}. We can retrieve it with \texttt{tkzGetPoint}.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[in](A,B,C)
\tkzGetPoint{I}
\tkzDrawLines(A,B B,C C,A)
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPoints(A,B,C)
\tkzGetPoints(I){i}
\tkzDrawCircle(I,i)
\tkzDrawPoints(A,B,C)
\tkzDrawPoint[red](I)
\tkzGetPoints(I){i}
\tkzDrawPoints(A,B,C)
\tkzLabelPoint(I){I}
\end{tikzpicture}

10.1.5. Option ex

An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the
10. Special points relating to a triangle

We get the center of an inscribed circle of the triangle. The result is of course in \texttt{tkzPointResult}. We can retrieve it with \texttt{tkzGetPoint}.

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/1/A,3/2/B,1/4/C}
\tkzDefTriangleCenter[ex](B,C,A)
\tkzGetPoint{J_c}
\tkzDefPointBy[projection=onto A--B](J_c)
\tkzGetPoint{Tc}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle[new](J_c,Tc)
\tkzDrawLines[add=1.5 and 0](A,C B,C)
\tkzDrawPoints(A,B,C,J_c)
\tkzLabelPoints(J_c)
\end{tikzpicture}

10.1.6. Option euler

This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet H_A, H_B, and H_C dropped from the vertices of any reference triangle ABC on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints M_A, M_B, M_C of the sides of ABC. By Feuerbach's theorem, the nine-point circle also passes through the midpoints E_A, E_B, and E_C of the segments that join the vertices and the orthocenter H. These points are commonly referred to as the Euler points.

(https://mathworld.wolfram.com/Nine-PointCircle.html)

\begin{tikzpicture}[scale=1,rotate=90]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle[new](N,E_A)
\tkzDrawSegments[new](A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,N,H)
\tkzDrawPoints[draw=green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,
font={\scriptsize}](A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
\tkzLabelPoints[font={\scriptsize}](H,N)
\tkzMarkSegments[mark=s, size=3pt, color=blue, line width=1pt](B,E_B E,B,H)
\end{tikzpicture}

10.1.7. Option symmedian

The point of concurrence K of the symmedians, sometimes also called the Lemoine point (in England and France) or the Grebe point (in Germany).

10. Special points relating to a triangle

10.1.8. **Option spieker**

The Spieker center is the center Sp of the Spieker circle, i.e., the incenter of the medial triangle of a reference triangle.


```latex
\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,5/5/C}
\tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDefTriangleCenter[spieker](A,B,C)
\tkzGetPoint{Sp}
\tkzDrawPolygon[](A,B,C)
\tkzDrawPolygon[new](Ma,Mb,Mc)
\tkzDefCircle[in](Ma,Mb,Mc) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPoints(B,C,A,Sp,Ma,Mb,Mc)
\tkzAutoLabelPoints[center=G,dist=.3](Ma,Mb)
\tkzLabelPoints[right]{Sp}
\tkzLabelPoints[below]{(A,B,Mc)}
\tkzLabelPoints[above]{(C)}
\end{tikzpicture}
```

10.1.9. **Option gergonne**

The Gergonne Point is the point of concurrency which results from connecting the vertices of a triangle to the opposite points of tangency of the triangle's incircle. (Joseph Gergonne French mathematician)

```latex
\begin{tikzpicture}
\tkzDrawPoints(6/0/A,6/0/B,5/5/C)
\tkzDefSpCTriangle[medial](A,B,C){Ma,Mb,Mc}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDefTriangleCenter[spieker](A,B,C)
\tkzGetPoint{Sp}
\tkzDrawPolygon[](A,B,C)
\tkzDrawPoints(B,C,A,Sp,Ma,Mb,Mc)
\tkzDefCircle[in](Ma,Mb,Mc) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPoints(B,C,A,Sp,Ma,Mb,Mc)
\tkzLabelPoints[right]{Sp}
\tkzLabelPoints[below]{(A,B,Mc)}
\tkzLabelPoints[above]{(C)}
\end{tikzpicture}
```
10. Special points relating to a triangle

10.1.10. Option nagel

Let T_a be the point at which the excircle with center J_a meets the side BC of a triangle ABC, and define T_b and T_c similarly. Then the lines AT_a, BT_b, and CT_c concur in the Nagel point N_a.

10.1.11. Option mittenpunkt

The mittenpunkt (also called the middlepoint) of a triangle ABC is the symmedian point of the excentral triangle, i.e., the point of concurrence M of the lines from the excenters through the corresponding triangle side midpoints.

11. Definition of points by transformation

These transformations are:

- translation;
- homothety;
11. Definition of points by transformation

– orthogonal reflection or symmetry;
– central symmetry;
– orthogonal projection;
– rotation (degrees or radians);
– inversion with respect to a circle.

11.1. \texttt{tkzDefPointBy}

The choice of transformations is made through the options. There are two macros, one for the transformation of a single point \texttt{tkzDefPointBy} and the other for the transformation of a list of points \texttt{tkzDefPointsBy}. By default the image of A is A'. For example, we’ll write:

\texttt{\tkzDefPointBy[translation= from A to A']}(B)

The result is in \texttt{tkzPointResult}

| arguments definition examples |
|-----------------------------|-------------------|
| \texttt{\tkzDefPointBy[(local options)](pt)} |

The argument is a simple existing point and its image is stored in \texttt{tkzPointResult}. If you want to keep this point then the macro \texttt{tkzGetPoint\{M\}} allows you to assign the name M to the point.

<table>
<thead>
<tr>
<th>arguments</th>
<th>definition examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{pt}</td>
<td>existing point name \texttt{(A)}</td>
</tr>
<tr>
<td>\texttt{options}</td>
<td>examples</td>
</tr>
<tr>
<td>\texttt{translation}</td>
<td>= from #1 to #2 translation=from A to B</td>
</tr>
<tr>
<td>\texttt{homothety}</td>
<td>= center #1 ratio #2 homothety=center A ratio .5</td>
</tr>
<tr>
<td>\texttt{reflection}</td>
<td>= over #1--#2 reflection=over A--B</td>
</tr>
<tr>
<td>\texttt{symmetry}</td>
<td>= center #1 symmetry=center A</td>
</tr>
<tr>
<td>\texttt{projection}</td>
<td>= onto #1--#2 projection=onto A--B</td>
</tr>
<tr>
<td>\texttt{rotation}</td>
<td>= center #1 angle #2 rotation=center 0 angle 3\pi</td>
</tr>
<tr>
<td>\texttt{rotation in rad}</td>
<td>= center #1 angle #2 rotation in rad=center 0 angle \pi/3</td>
</tr>
<tr>
<td>\texttt{rotation with nodes}</td>
<td>= center #1 from #2 to #3 center 0 from A to B</td>
</tr>
<tr>
<td>\texttt{inversion}</td>
<td>= center #1 through #2 inversion=center 0 through A</td>
</tr>
<tr>
<td>\texttt{inversion negative}</td>
<td>= center #1 through #2</td>
</tr>
</tbody>
</table>

The image is only defined and not drawn.

11.1.1. translation

\begin{verbatim}
\begin{tikzpicture}[>=latex]
\tkzDefPoints{0/0/A,3/1/B,3/0/C}
\tkzDefPointBy[translation= from B to A](C)
\tkzGetPoint{D}
\tkzDrawPoints[teal](A,B,C,D)
\tkzLabelPoints[teal](A,B,C,D)
\tkzDrawSegments[teal,->](A,B D,C)
\end{tikzpicture}
\end{verbatim}
11. Definition of points by transformation

11.1.2. reflection (orthogonal symmetry)

\begin{tikzpicture}
\tkzDefPoints{-2/-2/A,-1/-1/C,-4/2/D,-4/0/O}
\tkzDrawCircle(O,A)
\tkzDefPointBy[reflection = over C--D](A)
\tkzGetPoint{A'}
\tkzDefPointBy[reflection = over C--D](O)
\tkzGetPoint{O'}
\tkzDrawCircle(O',A')
\tkzDrawLine[add= .5 and .5](C,D)
\tkzDrawPoints(C,D,O,O')
\end{tikzpicture}

11.1.3. homothety and projection

\begin{tikzpicture}
\tkzDefPoints{0/1/A,5/3/B,3/4/C}
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDrawLine[add=0 and 0,color=magenta!50](A,a)
\tkzDefPointBy[homothety=center A ratio .5](a)
\tkzGetPoint{a'}
\tkzDefPointBy[projection = onto A--B](a')
\tkzGetPoint{a''}
\tkzDefPointBy[projection = onto A--B](a)
\tkzGetPoint{k}
\tkzDefLines[add= 0 and .3](A,k A,C)
\tkzDrawSegments[blue](a',k',a,k)
\tkzDrawPoints(a,a',k,k',A)
\tkzDrawCircles(a',k',a,k)
\tkzLabelPoints(a,a',k,A)
\end{tikzpicture}
11. Definition of points by transformation

11.1.4. projection

\begin{tikzpicture}[scale=1.5]
\tkzDefPoints{B/A,2/B,0/O}
\tkzDefPointsBy[symmetry=center O](B,A){}
\tkzDrawLine(A,A')
\tkzDrawLine(B,B')
\tkzMarkAngle[mark=s,arc=lll,
size=1.5,mkcolor=red](A,0,B)
\tkzLabelAngle[pos=2,circle,draw,
fill=blue!10,font=\scriptsize](A,0,B){60°}
\tkzDrawPoints(A,B,0,A',B')
\tkzLabelPoints(0,0,A,B)
\tkzLabelPoints[below](A,0,A')
\end{tikzpicture}

11.1.5. symmetry

\begin{tikzpicture}[scale=1]
\tkzDefPoints{2/-1/A,2/2/B,0/0/O}
\tkzDefPointsBy[symmetry=center O](B,A){}
\tkzDrawLine(A,A')
\tkzDrawLine(B,B')
\tkzMarkAngle[mark=s,arc=lll,
size=1.5,mkcolor=red](A,0,B)
\tkzLabelAngle[pos=2,circle,draw,
fill=blue!10,font=\scriptsize](A,0,B){60°}
\tkzDrawPoints(A,B,0,A',B')
\tkzLabelPoints(0,0,A,B)
\tkzLabelPoints[below](A,0,A')
\end{tikzpicture}
11.1.6. rotation

\begin{tikzpicture}[scale=0.5]
 \tkzDefPoints{0/0/A,5/0/B}
 \tkzDrawSegment(A,B)
 \tkzDefPointBy[rotation=center A angle 60](B)
 \tkzGetPoint{C}
 \tkzDefPointBy[symmetry=center C](A)
 \tkzGetPoint{D}
 \tkzDrawSegment(A,tkzPointResult)
 \tkzDrawLine(B,D)
 \tkzDrawArc(A,B)(C) \tkzDrawArc(B,C)(A) \tkzDrawArc(C,D)(D)
 \tkzMarkRightAngle(D,B,A)
 \tkzDrawPoints(A,B)
 \tkzLabelPoints(A,B)
 \tkzLabelPoints[above](C)
 \tkzLabelPoints[right](D)
\end{tikzpicture}

11.1.7. rotation in radian

\begin{tikzpicture}
 \tkzDefPoint\("A" left\}(1,5){A}
 \tkzDefPoint\("B" right\}(4,3){B}
 \tkzDefPointBy[rotation in rad= center A angle pi/3](B)
 \tkzGetPoint{C}
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,C)
 \tkzCompass(A,C)
 \tkzCompass(B,C)
 \tkzLabelPoints(C)
\end{tikzpicture}

11.1.8. rotation with nodes

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(0:2){A}
 \tkzDefPoint(40:2){B}
 \tkzDefPoint(20:4){C}
 \tkzDrawLine(O,A)
 \tkzDefPointBy[rotation with nodes =center O from A to B](C)
 \tkzGetPoint{D}
 \tkzDrawPoints(A,B,C,D)
 \tkzDrawCircle(O,A)
 \tkzLabelPoints(A,C,D)
 \tkzLabelPoints[above](B)
\end{tikzpicture}

11.1.9. inversion

Inversion is the process of transforming points to a corresponding set of points known as their inverse points. Two points P and P' are said to be inverses with respect to an inversion circle having inversion center O and inversion radius k if P' is the perpendicular foot of the altitude of OQP, where Q is a point on the circle such that
OQ is perpendicular to PQ.

The quantity k^2 is known as the circle power (Coxeter 1969, p. 81). (https://mathworld.wolfram.com/Inversion.html)

Some propositions:

- The inverse of a circle (not through the center of inversion) is a circle.
- The inverse of a circle through the center of inversion is a line.
- The inverse of a line (not through the center of inversion) is a circle through the center of inversion.
- A circle orthogonal to the circle of inversion is its own inverse.
- A line through the center of inversion is its own inverse.
- Angles are preserved in inversion.

Explanation:

Directly (Center O power $k^2 = OA^2 = OP \times OP'$)
11. Definition of points by transformation

11.1.10. Inversion of lines ex 1

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/O,3/0/I,4/3/P,6/-3/Q}
\tkzDrawCircle(O,I)
\tkzDefPointBy[projection= onto P--Q](O) \tkzGetPoint{A}
\tkzDefPointBy[inversion = center O through I](A)
\tkzGetPoint{A'}
\tkzDefPointBy[inversion = center O through I](P)
\tkzGetPoint{P'}
\tkzDefCircle[diameter](O,A')\tkzGetPoint{o}
\tkzDrawCircle[new](o,A')
\tkzDrawLines[add=.25 and .25,red](P,Q)
\tkzDrawLines[add=.25 and .25](O,A)
\tkzDrawSegments(O,P)
\tkzDrawPoints(A,P,O) \tkzDrawPoints[new](A',P')
\end{tikzpicture}

11.1.11. inversion of lines ex 2

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/O,3/0/I,3/2/P,3/-2/Q}
\tkzDrawCircle(O,I)
\tkzDefPointBy[projection= onto P--Q](O) \tkzGetPoint{A}
\tkzDefPointBy[inversion = center O through I](A)
\tkzGetPoint{A'}
\tkzDefPointBy[inversion = center O through I](P)
\tkzGetPoint{P'}
\tkzDefCircle[diameter](O,A')\tkzGetPoint{o}
\tkzDrawCircle[new](o,A')
\tkzDrawLines[add=.25 and .25,red](P,Q)
\tkzDrawLines[add=.25 and .25](O,A)
\tkzDrawSegments(O,P)
\tkzDrawPoints(A,P,O) \tkzDrawPoints[new](A',P')
\end{tikzpicture}

11.1.12. inversion of lines ex 3

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/O,3/0/I,2/1/P,2/-2/Q}
\tkzDrawCircle(O,I)
\tkzDefPointBy[projection= onto P--Q](O) \tkzGetPoint{A}
\tkzDefPointBy[inversion = center O through I](A)
\tkzGetPoint{A'}
\tkzDefPointBy[inversion = center O through I](P)
\tkzGetPoint{P'}
\tkzDefCircle[diameter](O,A')
\tkzDrawCircle[new](I,A')
\tkzDrawLines[add=.25 and .75,red](P,Q)
\tkzDrawLines[add=.25 and .25](O,A')
\tkzDrawSegments(O,P')
\tkzDrawPoints(A,P,O) \tkzDrawPoints[new](A',P')
\end{tikzpicture}

\textit{tkz-euclide} AlterMundus
11.1.13. inversion of circle and homothety

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,3/2/A,2/1/P}
\tkzDefLine[tangent from = O](A,P) \tkzGetPoints{T}{X}
\tkzDefPointsBy[homothety = center O \% ratio 1.25](A,P,T){}
\tkzInterCC(A,P)(A',P') \tkzGetPoints{C}{D}
\tkzCalcLength(A,P) \tkzGetLength{rAP}
\tkzDefPointOnCircle[R= center A angle 190 radius \rAP](A)
\tkzDefPointBy[inversion = center O through C](M)
\tkzDrawCircles[new](A,P A',P')
\tkzDrawCircle(O,C)
\tkzDrawLines[add=0 and .5](O,T' O,A' O,M' O,P')
\tkzLabelPoints(O,T,T',M,M')
\tkzLabelPoints[below](P,P')
\end{tikzpicture}

11.1.14. inversion of Triangle with respect to the Incircle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,5/1/B,3/6/C}
\tkzDefTriangleCenter[in](A,B,C) \tkzGetPoint{O}
\tkzDefPointBy[projection= onto A--C](O) \tkzGetPoint{b}
\tkzDefPointBy[projection= onto A--C](O) \tkzGetPoint{a}
\tkzDefPointBy[projection= onto B--C](O) \tkzGetPoint{c}
\tkzDefPointsBy[inversion = center O through b](a,b,c){Ia,Ib,Ic}
\tkzDefMidPoint(O,Ia) \tkzGetPoint{Ja}
\tkzDefMidPoint(O,Ib) \tkzGetPoint{Jb}
\tkzDefMidPoint(O,Ic) \tkzGetPoint{Jc}
\tkzInterCC(Ja,O)(Jb,O) \tkzGetPoints{O}{x}
\tkzInterCC(Ja,O)(Jc,O) \tkzGetPoints{y}{O}
\tkzInterCC(Jb,O)(Jc,O) \tkzGetPoints{z}{O}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(O,b) \tkzDrawPoints(A,B,C,O)
\tkzDrawCircles[dashed,gray](Ja,x Jb,y Jc,z)
\tkzDrawArc[line width=lpt,orange,delta=8](Ja,x)(z)
\tkzDrawArc[line width=lpt,orange,delta=8](Jb,x)(y)
\tkzDrawArc[line width=lpt,orange,delta=8](Jc,y)(x)
\tkzLabelPoint[below](A){A} \tkzLabelPoint[above](C){C}$
\tkzLabelPoint[right](B){B}$
\end{tikzpicture}

11.1.15. inversion: orthogonal circle with inversion circle

The inversion circle itself, circles orthogonal to it, and lines through the inversion center are invariant under inversion. If the circle meets the reference circle, these invariant points of intersection are also on the inverse circle. See I and J in the next figure.
11. Definition of points by transformation

For a more complex example see Pappus 45.25

11.1.16. inversion negative

It's an inversion followed by a symmetry of center O

\begin{tikzpicture}[scale=1.5]
\tkzDefPoints{1/0/A,0/0/O}
\tkzDefPoint(-1.5,-1.5){z1}
\tkzDefPoint(0.35,-2){z2}
\tkzDefPointBy[inversion negative = center O through A](z1)
\tkzGetPoint{Z1}
\tkzDefPointBy[inversion negative = center O through A](z2)
\tkzGetPoint{Z2}
\tkzDrawCircle(O,A)
\tkzDrawPoints[color=black, fill=red,size=4](Z1,Z2)
\tkzDrawSegments(z1,Z1 z2,Z2)
\tkzLabelPoints[font=\scriptsize](O,A,z1,z2,Z1,Z2)
\end{tikzpicture}
11. Definition of points by transformation

11.2. Transformation of multiple points; \texttt{tkzDefPointsBy}

Variant of the previous macro for defining multiple images. You must give the names of the images as arguments, or indicate that the names of the images are formed from the names of the antecedents, leaving the argument empty.

\texttt{\tkzDefPointsBy[translation= from A to A']}(B,C){}

The images are B' and C'.

\texttt{\tkzDefPointsBy[translation= from A to A']}(B,C){D,E}

The images are D and E.

\texttt{\tkzDefPointsBy[translation= from A to A']}(B){}

The image is B'.

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,3/1/A',1/2/C}
\tkzDefPointsBy[translation= from A to A'](B,C){}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[new](A',B',C')
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](A',B',C')
\tkzLabelPoints(A,B,A',B',C,C')
\tkzDrawSegments[color = gray,->, style=dashed](A,A' B,B' C,C')
\end{tikzpicture}
\end{verbatim}

The points are only defined and not drawn.

11.2.1. Translation of multiple points

\begin{verbatim}
\begin{tikzpicture}[]
\tkzDefPoints{0/0/A,3/0/B,3/1/A',1/2/C}
\tkzDefPointsBy[translation= from A to A'](B,C){}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[new](A',B',C')
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](A',B',C')
\tkzLabelPoints(A,B,A',B',C,C')
\tkzDrawSegments[color = gray,->, style=dashed](A,A' B,B' C,C')
\end{tikzpicture}
\end{verbatim}

\texttt{tkz-euclide} AlterMundus
12. Defining points using a vector

12.1. \texttt{tkzDefPointWith}

There are several possibilities to create points that meet certain vector conditions. This can be done with \texttt{tkzDefPointWith}. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point (with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in \texttt{tkzPointResult}. The macro \texttt{tkzGetPoint} allows you to retrieve the point and name it differently.

\begin{Verbatim}
\texttt{tkzDefPointWith((pt1,pt2))}
\end{Verbatim}

It is in fact the definition of a point meeting vectorial conditions.

<table>
<thead>
<tr>
<th>arguments</th>
<th>definition</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>point couple the result is a point in \texttt{tkzPointResult}</td>
<td></td>
</tr>
</tbody>
</table>

In what follows, it is assumed that the point is recovered by \texttt{tkzGetPoint(C)}

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>orthogonal</td>
<td>orthogonal</td>
<td>$\overrightarrow{AC} = \overrightarrow{AB}$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$</td>
</tr>
<tr>
<td>orthogonal normed</td>
<td>orthogonal normed</td>
<td>$\overrightarrow{AC} = \overrightarrow{AB}$ and $\overrightarrow{AC} \perp \overrightarrow{AB}$</td>
</tr>
<tr>
<td>linear</td>
<td>linear</td>
<td>$\overrightarrow{AC} = k \times \overrightarrow{AB}$</td>
</tr>
<tr>
<td>linear normed</td>
<td>linear normed</td>
<td>$\overrightarrow{AC} = K \times \overrightarrow{AB}$</td>
</tr>
<tr>
<td>colinear= at #1</td>
<td>colinear= at C</td>
<td>$\overrightarrow{CD} = \overrightarrow{AB}$</td>
</tr>
<tr>
<td>colinear normed= at #1</td>
<td>colinear normed= at C</td>
<td>$\overrightarrow{CD} = \overrightarrow{AB}$</td>
</tr>
<tr>
<td>K</td>
<td>linear,K=2</td>
<td>$\overrightarrow{AC} = 2 \times \overrightarrow{AB}$</td>
</tr>
</tbody>
</table>
12. Defining points using a vector

12.1.1. Option colinear at, simple example

\(\overrightarrow{AB} = \overrightarrow{CD} \)

\begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=1pt,>=latex'}]
\tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} \tkzDefPoint(0,1){C} \tkzDefPointWith[colinear=at C](A,B) \tkzGetPoint{D} \tkzDrawPoints[new](A,B,C,D) \tkzLabelPoints[above right=3pt](A,B,C,D) \tkzDrawSegments[vect](A,B C,D) \end{tikzpicture}

12.1.2. Option colinear at, complex example
12. Defining points using a vector

12.1.3. Option \texttt{colinear at}

How to use K

\begin{tikzpicture}[vect/.style={->, shorten >=1pt, >=latex'}]
\tkzDefPoints{0/0/A, 5/0/B, 1/2/C}
\tkzDefPointWith[colinear=at C](A,B)
\tkzGetPoint{G}
\tkzDefPointWith[colinear=at C, K=0.5](A,B)
\tkzGetPoint{H}
\tkzLabelPoints(A,B,C,G,H)
\tkzDrawPoints(A,B,C,G,H)
\tkzDrawSegments(A,B C,D)
\end{tikzpicture}

12.1.4. Option \texttt{colinear at}

With $K = \frac{\sqrt{2}}{2}$

\begin{tikzpicture}[vect/.style={->, shorten >=1pt, >=latex'}]
\tkzDefPoints{1/1/A, 4/2/B, 2/2/C}
\tkzDefPointWith[colinear=at C, K=\sqrt{2}/2](A,B)
\tkzGetPoint{D}
\tkzDrawPoints[color=red](A,B,C,D)
\tkzDrawSegments[vect](A,B C,D)
\end{tikzpicture}

12.1.5. Option \texttt{orthogonal}

$AB=AC$ since $K = 1$.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/B, 3.6/0/C, 1.5/4/A}
\tkzDefSpcTriangle[ortho](A,B,C){Ha,Hb,Hc}
\tkzDefTriangleCenter[ortho](A,B,C) \tkzGetPoint{H}
\tkzDefSquare(A,C) \tkzGetPoints{R}{S}
\tkzDefSquare(B,A) \tkzGetPoints{M}{N}
\tkzDefSquare(C,B) \tkzGetPoints{P}{Q}
\tkzDefPointWith[colinear= at M](A,S) \tkzGetPoint{A'}
\tkzDefPointWith[colinear= at P](B,N) \tkzGetPoint{B'}
\tkzDefPointWith[colinear= at Q](C,R) \tkzGetPoint{C'}
\tkzDefPointBy[projection=onto P--Q](Ha) \tkzGetPoint{Pa}
\tkzDrawPolygon[teal, thick](A,C,R,S) \tkzDrawPolygon[teal,(thick](A,B,N,M)
\tkzDrawPolygon[teal, thick](C,B,P,Q)
\tkzDrawPoints[teal, size=2](A,B,C,Ha,Hb,Hc,A',B',C')
\tkzDrawSegments[ultra thin, red](M,A' A' S P B' B' N Q C' C' R B S C M C N B R A P A Q)
\tkzDrawSegments[ultra thin, teal, dashed](A,Ha B,Hb C,Hc)
\tkzDrawPointBy[rotation=center A angle 90](S) \tkzGetPoint{S'}
\tkzDrawSegments[ultra thin, teal, dashed](B,S' A,S' A' M,S' B' Q P,C' M,S Ha,Pa)
\tkzDrawArc(A,S)(S')
\end{tikzpicture}
12. Defining points using a vector

12.1.6. Option orthogonal

With $K = -1$ OK=OI since $|K| = 1$ then OI=OJ=OK.

12.1.7. Option orthogonal more complicated example
12. Defining points using a vector

12.1.8. Options colinear and orthogonal

\begin{tikzpicture}[scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/1/A,6/2/B}
 \tkzDefPointWith[orthogonal,K=.5](A,B)
 \tkzGetPoint{C}
 \tkzDefPointWith[colinear=at C,K=.5](A,B)
 \tkzGetPoint{D}
 \tkzMarkRightAngle[fill=gray!20](B,A,C)
 \tkzDrawSegments[vect](A,B A,C C,D)
 \tkzDrawPoints(A,...,D)
\end{tikzpicture}

12.1.9. Option orthogonal normed

\begin{tikzpicture}[scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/3/A,4/2/B}
 \tkzDefPointWith[orthogonal normed](A,B)
 \tkzGetPoint{C}
 \tkzDrawPoints[color=red](A,B,C)
 \tkzDrawSegments[vect](A,B A,C)
 \tkzMarkRightAngle[fill=gray!20](B,A,C)
\end{tikzpicture}

12.1.10. Option orthogonal normed and K=2

\begin{tikzpicture}[scale=1.2,
 vect/.style={->,shorten >=1pt,>=latex'}]
 \tkzDefPoints{2/3/A,5/1/B}
 \tkzDefPointWith[orthogonal normed,K=2](A,B)
 \tkzGetPoint{C}
 \tkzDrawPoints[color=red](A,B,C)
 \tkzDrawSegments[vect](A,B A,C)
 \tkzMarkRightAngle[fill=gray!20](B,A,C)
\end{tikzpicture}

12.1.11. Option linear

Here K = 0.5.
This amounts to applying a homothety or a multiplication of a vector by a real. Here is the middle of [AB].

\begin{tikzpicture}[scale=1.2]
 \tkzDefPoints{1/3/A,4/2/B}
 \tkzDefPointWith[linear,K=0.5](A,B)
 \tkzGetPoint{C}
 \tkzDrawPoints[color=red](A,B,C)
 \tkzDrawSegment(A,B)
 \tkzLabelPoints[above right=3pt](A,B,C)
\end{tikzpicture}
12.1.12. Option linear normed

In the following example $AC = 1$ and C belongs to (AB).

\begin{tikzpicture}[scale=1.2]
\tkzDefPoints{1/3/A,4/2/B}
\tkzDefPointWith[linear normed](A,B)
\tkzGetPoint{C}
\tkzDrawPoints[red](A,B,C)
\tkzDrawSegment(A,B)
\tkzLabelSegment(A,C){1}
\tkzLabelPoints[above right=3pt](A,B,C)
\end{tikzpicture}

12.2. \texttt{tkzGetVectxy}

Retrieving the coordinates of a vector.

\texttt{tkzGetVectxy(A,B){\textit{text}}}

Allows to obtain the coordinates of a vector.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{(point)} \texttt{name of macro) tkzGetVectxy(A,B)}</td>
<td>\texttt{Vx, Vy: coordinates of \overrightarrow{AB}}</td>
<td></td>
</tr>
</tbody>
</table>

12.2.1. Coordinate transfer with \texttt{tkzGetVectxy}

\begin{tikzpicture}
\tkzDefPoints{0/0/O,1/1/A,4/2/B}
\tkzGetVectxy(A,B){v}
\tkzDefPoint(vx,vy){V}
\tkzDrawSegment[->, red](O,V)
\tkzDrawSegment[->, blue](A,B)
\tkzDrawPoints(A,B,O)
\tkzLabelPoints(A,B,O,V)
\end{tikzpicture}

13. Straight lines

It is of course essential to draw straight lines, but before this can be done, it is necessary to be able to define certain particular lines such as mediators, bisectors, parallels or even perpendiculars. The principle is to determine two points on the straight line.

13.1. Definition of straight lines

\texttt{tkzDefLine[local options]((pt1,pt2)) or ((pt1,pt2,pt3))}

The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \texttt{tkzGetPoint} or the macro \texttt{tkzGetPoints} must be used. I used the term "mediator" to designate the perpendicular bisector line at the middle of a line segment.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>mediator</td>
<td>mediator of the segment $[A,B]$</td>
</tr>
<tr>
<td>(pt1,pt2,pt3)</td>
<td>bisector</td>
<td>bisector of ABC</td>
</tr>
<tr>
<td>(pt1,pt2,pt3)</td>
<td>altitude</td>
<td>altitude from B</td>
</tr>
<tr>
<td>(pt1)</td>
<td>tangent at=A</td>
<td>tangent at A on the circle center O</td>
</tr>
<tr>
<td>(pt1,pt2)</td>
<td>tangent from=A</td>
<td>circle center O through B</td>
</tr>
</tbody>
</table>
13. Straight lines

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mediator</td>
<td></td>
<td>perpendicular bisector of a line segment</td>
</tr>
<tr>
<td>perpendicular=through...</td>
<td>mediator</td>
<td>perpendicular to a straight line passing through a point</td>
</tr>
<tr>
<td>orthogonal=through...</td>
<td>mediator</td>
<td>see above</td>
</tr>
<tr>
<td>parallel=through...</td>
<td>mediator</td>
<td>parallel to a straight line passing through a point</td>
</tr>
<tr>
<td>bisector</td>
<td>mediator</td>
<td>bisector of an angle defined by three points</td>
</tr>
<tr>
<td>bisector out</td>
<td>mediator</td>
<td>exterior angle bisector</td>
</tr>
<tr>
<td>symmedian</td>
<td>mediator</td>
<td>symmedian from a vertex</td>
</tr>
<tr>
<td>altitude</td>
<td>mediator</td>
<td>altitude from a vertex</td>
</tr>
<tr>
<td>euler</td>
<td>mediator</td>
<td>euler line of a triangle</td>
</tr>
<tr>
<td>tangent at</td>
<td>mediator</td>
<td>tangent at a point of a circle</td>
</tr>
<tr>
<td>tangent from</td>
<td>mediator</td>
<td>tangent from an exterior point</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>coefficient for the perpendicular line</td>
</tr>
<tr>
<td>normed</td>
<td>false</td>
<td>normalizes the created segment</td>
</tr>
</tbody>
</table>

13.1.1. With mediator

```
\begin{tikzpicture}[rotate=25]
  \tkzDefPoints{-2/0/A,1/2/B}
  \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D}
  \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D}
  \tkzDefMidPoint(A,B) \tkzGetPoint{I}
  \tkzFillPolygon[color=teal!20](A,C,B,D)
  \tkzDrawSegments(A,B C,D)
  \tkzMarkRightAngle(B,I,C)
  \tkzDrawSegments(D,B D,A)
  \tkzDrawSegments(C,B C,A)
\end{tikzpicture}
```

13.1.2. An envelope with option mediator

Based on a figure from O. Reboux with pst-eucl by D Rodriguez.

```
\begin{tikzpicture}[scale=.6]
  \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
  \tkzClip
  \tkzSetUpLine[thin,color=magenta]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(132:4){A}
  \tkzDefPoint(5,0){B}
  \foreach \ang in {5,10,...,360}{\%}
    \tkzDefPoint(\ang:5){M}
  \tkzDefPointWith[linear,K=.75](A,B){C,D}
  \tkzDrawSegments(A,B C,D)
  \tkzMarkRightAngle(B,I,C)
  \tkzDrawSegments(D,B D,A)
  \tkzDrawSegments(C,B C,A)
\end{tikzpicture}
```

13.1.3. A parabola with option mediator

Based on a figure from O. Reboux with pst-eucl by D Rodriguez. It is not necessary to name the two points that define the mediator.

```
\begin{tikzpicture}[scale=.6]
  \tkzInit[xmin=-6,ymin=-4,xmax=6,ymax=6]
  \tkzClip
  \tkzSetUpLine[thin,color=magenta]
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(132:4){A}
  \tkzDefPoint(5,0){B}
  \foreach \ang in {5,10,...,360}{\%
    \tkzDefPoint(\ang:5){M}
  \tkzDefLine[mediator](A,M)
  \tkzGetPoints{x}{y}
  \tkzDrawLine[add= 3 and 3](x,y)}
\end{tikzpicture}
```
13. Straight lines

13.1.4. With options `bisection` and `normed`

\begin{tikzpicture}[rotate=25,scale=.75]
\tkzDefPoints{0/0/C, 2/-3/A, 4/0/B}
\tkzDefLine[bisector,normed](B,A,C) \tkzGetPoint{a}
\tkzDrawLines[add= 0 and .5](A,B A,C)
\tkzShowLine[bisector,gap=4,size=2,color=red](B,A,C)
\tkzDrawLines[new,dashed,add= 0 and 3](A,a)
\end{tikzpicture}

13.1.5. With option `parallel=through`
Archimedes' Book of Lemmas proposition 1

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{15:3}{F}
\tkzInterLC(F,O_1)(O_1,A) \tkzGetSecondPoint{E}
\tkzDefLine[parallel=through O_2](E,F) \tkzGetPoint{x}
\tkzInterLC(x,O_2)(O_2,A) \tkzGetPoints{D}{C}
\tkzDrawCircles(O_1,A O_2,A)
\tkzDrawSegments(new)(O_1,A E,F C,D)
\tkzDrawSegments(purple)(A,E A,F)
\tkzDrawPoints(A,B_0,E,F,C,D)
\end{tikzpicture}
13.1.6. With option orthogonal and parallel

\begin{tikzpicture}
 \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C}
 \tkzDrawLine(A,B)
 \tkzLabelLine[below left,pos=1.25](A,B){(d_1)}
 \tkzDrawPoints(A,B,C)
 \tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c}
 \tkzDrawLine(C,c)
 \tkzLabelLine[left,pos=1.25](C,c){(δ)}
 \tkzInterLL(A,B)(C,c) \tkzGetPoint{I}
 \tkzMarkRightAngle(C,I,B)
 \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'}
 \tkzDrawLine(C,c')
 \tkzLabelLine[below left,pos=1.25](C,c'){(d_2)}
\end{tikzpicture}

13.1.7. With option altitude

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
 \tkzDefLine[altitude](A,B,C) \tkzGetPoint{b}
 \tkzDefLine[altitude](B,C,A) \tkzGetPoint{c}
 \tkzDefLine[altitude](B,A,C) \tkzGetPoint{a}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints[blue](a,b,c)
 \tkzDrawSegments[blue](A,a B,b C,c)
 \tkzLabelPoints(A,B,C,a,b,c)
\end{tikzpicture}

13.1.8. With option euler

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
 \tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{o}
 \tkzDefLine[euler](A,B,C) \tkzGetPoints{h}{e}
 \tkzDrawPolygon[teal](A,B,C)
 \tkzDrawPoints[red](A,B,C,h,e,o)
 \tkzDrawLine[add= 2 and 2](h,e)
 \tkzLabelPoints[above right](A,B,C,h,e,o)
\end{tikzpicture}
13.1.9. Tangent passing through a point on the circle tangent at

```latex
\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){O}
\tkzDefPoint(6,6){E}
\tkzDefRandPointOn[circle=center O radius 3]
\tkzGetPoint{A}
\tkzDrawSegment(O,A)
\tkzDrawCircle(O,A)
\tkzDefLine[tangent at=A](O)
\tkzGetPoint{h}
\tkzDrawLine[add = 4 and 3](A,h)
\tkzMarkRightAngle[fill=teal!30](O,A,h)
\end{tikzpicture}
```

13.1.10. Choice of contact point with tangents passing through an external point option tangent from

The tangent is not drawn. With option at, a point of the tangent is given by \texttt{tkzPointResult}. With option from you get two points of the circle with \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}. You can choose between these two points by comparing the angles formed with the outer point, the contact point and the center. The two possible angles have different directions. Angle counterclockwise refers to \texttt{tkzFirstPointResult}.

```latex
\begin{tikzpicture}[scale=1,rotate=-30]
\tkzDefPoints{0/0/Q,0/2/A,6/-1/O}
\tkzDefLine[tangent from = O](Q,A) \tkzGetPoints{R}{S}
\tkzInterLC[near](O,Q)(Q,A) \tkzGetPoints{M}{N}
\tkzDrawCircle(Q,M)
\tkzDrawSegments[add = 0 and .2](O,R O,S)
\tkzDrawSegments[gray](N,O R,Q S,Q)
\tkzDrawPoints(O,Q,R,S,M,N)
\tkzMarkAngle[gray,-stealth,size=1](O,R,Q)
\tkzFindAngle(O,R,Q) \tkzGetAngle{an}
\tkzLabelAngle(O,R,Q){$\pgfmathprintnumber{\an}^\circ$}
\tkzMarkAngle[gray,-stealth,size=1](O,S,Q)
\tkzFindAngle(O,S,Q) \tkzGetAngle{an}
\tkzMarkAngle[gray,-stealth,size=1](O,S,Q)
\tkzLabelAngle(O,S,Q){$\pgfmathprintnumber{\an}^\circ$}
\tkzLabelPoints[above,text=red](S)
\end{tikzpicture}
```
13.1.11. Example of tangents passing through an external point

\begin{tikzpicture}[scale=.8]
\tkzDefPoints{0/0/c,1/0/d,3/0/a0}
def\tkzRadius{1}
\tkzDrawCircle(c,d)
\foreach \an in {0,10,...,350}{
\tkzDefPointBy[rotation=center c angle \an](a0)
\tkzGetPoint{a}
\tkzDefLine[tangent from = a](c,d)
\tkzGetPoints{e}{f}
\tkzDrawLines(a,f a,e)
\tkzDrawSegments(c,e c,f)}\end{tikzpicture}

13.1.12. Example of Andrew Mertz

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B}
\tkzDefPoint(0,0){C} \tkzDefPoint(0,-4){R}
\tkzDrawCircle(C,R)
\tkzDefLine[tangent from = A](C,R) \tkzGetPoints{D}{E}
\tkzDefLine[tangent from = B](C,R) \tkzGetPoints{F}{G}
\tkzDrawSector[fill=teal!20,opacity=0.5](A,E)(D)
\tkzFillSector[color=teal,opacity=0.5](B,G)(F)
\end{tikzpicture}

http://www.texample.net/tikz/examples/
13.1.13. Drawing a tangent option \texttt{tangent from}

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){B}
\tkzDefPoint(0,8){A}
\tkzDefSquare(A,B)
\tkzGetPoints{C}{D}
\tkzDrawPolygon(A,B,C,D)
\tkzClipPolygon(A,B,C,D)
\tkzDefPoint(4,8){F}
\tkzDefPoint(4,0){E}
\tkzDefPoint(4,4){Q}
\tkzFillPolygon[color = green](A,B,C,D)
\tkzDrawCircle[fill = orange](B,A)
\tkzDrawCircle[fill = purple](E,B)
\tkzDefLine[tangent from = B](F,A)
\tkzInterLL(F,tkzSecondPointResult)(C,D)
\tkzInterLL(A,tkzPointResult)(F,E)
\tkzDrawCircle[fill = yellow](tkzPointResult,Q)
\tkzDefPointBy[projection= onto B--A](tkzPointResult)
\tkzDrawCircle[fill = blue!50!black](tkzPointResult,A)
\end{tikzpicture}

14. Triangles

14.1. Definition of triangles \texttt{tkzDefTriangle}

The following macros will allow you to define or construct a triangle from at least two points. At the moment, it is possible to define the following triangles:

- \texttt{two angles} determines a triangle with two angles;
- \texttt{equilateral} determines an equilateral triangle;
- \texttt{isosceles right} determines an isosceles right triangle;
- \texttt{half} determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to 2;
- \texttt{pythagore} determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5;
- \texttt{school} determines a right-angled triangle whose angles are 30, 60 and 90 degrees;
- \texttt{golden} determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi = 1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees;
- \texttt{euclid or gold} for the gold triangle; in the previous version the option was "euclidean" with an "e".
- \texttt{cheops} determines a third point such that the triangle is isosceles with side measurements proportional to 2, Φ and Φ.
The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \texttt{tkzGetPoint} or by using \texttt{tkzPointResult} if it is not necessary to keep the name.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>two angles= #1 and #2</td>
<td>no defaut</td>
<td>triangle knowing two angles</td>
</tr>
<tr>
<td>equilateral</td>
<td>equilateral</td>
<td>equilateral triangle</td>
</tr>
<tr>
<td>half</td>
<td>equilateral</td>
<td>B rectangle $AB = 2BC$ AC hypothenuse</td>
</tr>
<tr>
<td>isosceles right</td>
<td>equilateral</td>
<td>isosceles right triangle</td>
</tr>
<tr>
<td>pythagorean</td>
<td>equilateral</td>
<td>proportional to the pythagorean triangle 3-4-5</td>
</tr>
<tr>
<td>pythagoras</td>
<td>equilateral</td>
<td>same as above</td>
</tr>
<tr>
<td>egyptian</td>
<td>equilateral</td>
<td>same as above</td>
</tr>
<tr>
<td>school</td>
<td>equilateral</td>
<td>angles of 30, 60 and 90 degrees</td>
</tr>
<tr>
<td>gold</td>
<td>equilateral</td>
<td>angles of 72, 72 and 36 degrees, A is the apex</td>
</tr>
<tr>
<td>euclid</td>
<td>equilateral</td>
<td>angles of 72, 72 and 36 degrees, C is the apex</td>
</tr>
<tr>
<td>golden</td>
<td>equilateral</td>
<td>$AC = BC$, AC and BC are proportional to 2 and Φ.</td>
</tr>
<tr>
<td>sublime</td>
<td>equilateral</td>
<td>angles of 72, 72 and 36 degrees, C is the apex</td>
</tr>
<tr>
<td>cheops</td>
<td>equilateral</td>
<td>same as above</td>
</tr>
<tr>
<td>swap</td>
<td>false</td>
<td>gives the symmetric point with respect to AB</td>
</tr>
</tbody>
</table>

\texttt{tkzGetPoint} allows you to store the point otherwise \texttt{tkzPointResult} allows for immediate use.

14.1.1. Option \texttt{equilateral}

\begin{verbatim}
\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(4,0){B}
 \tkzDefTriangle[equilateral](A,B)
 \tkzGetPoint{C}
 \tkzDrawPolygons(A,B,C)
 \tkzDefTriangle[equilateral](B,A)
 \tkzGetPoint{D}
 \tkzDrawPolygon(B,A,D)
 \tkzMarkSegments[mark=s|](A,B B,C A,C A,D B,D)
\end{tikzpicture}
\end{verbatim}
14. Triangles

14.1.2. **Option two angles**

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefTriangle[two angles = 50 and 70](A,B)
\tkzGetPoint{C}
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzDrawPoints[new](C)
\tkzLabelPoints[above,new](C)
\tkzLabelAngle[pos=1.4](B,A,C){50°}
\tkzLabelAngle[pos=0.8](C,B,A){70°}
\end{tikzpicture}

14.1.3. **Option school**

The angles are 30, 60 and 90 degrees.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDefTriangle[school](A,B)
\tkzGetPoint{C}
\tkzMarkRightAngles(C,B,A)
\tkzLabelAngle[pos=0.8](B,A,C){30°}
\tkzLabelAngle[pos=0.8](C,B,A){90°}
\tkzLabelAngle[pos=0.8](A,C,B){60°}
\tkzDrawSegments(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.1.4. **Option pythagore**

This triangle has sides whose lengths are proportional to 3, 4 and 5.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDefTriangle[pythagore](A,B)
\tkzGetPoint{C}
\tkzDrawSegments(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzMarkRightAngles(A,B,C)
\tkzLabelPoints[A,B,C]
\tkzLabelPoints[above](A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.1.5. **Option pythagore and swap**

This triangle has sides whose lengths are proportional to 3, 4 and 5.
14. Triangles

14.1.6. Option golden

\begin{tikzpicture}[scale=.8]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[golden](A,B)\tkzGetPoint{C}
\tkzDefSpcTriangle[in,name=M](A,B,C){a,b,c}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoint[above,new](C){C}
\end{tikzpicture}

14.1.7. Option euclid

Euclid and golden are identical but the segment AB is a base in one and a side in the other.

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[euclid](A,B)\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\tkzLabelAngle[pos=0.8](A,B,C){72°}
\tkzLabelAngle[pos=0.8](B,C,A){72°}
\tkzLabelAngle[pos=0.8](C,A,B){36°}
\end{tikzpicture}
14. Triangles

14.1.8. Option isosceles right

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefTriangle[isosceles right](A,B)
\tkzGetPoint{C}
\tkzDrawPolygons(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzMarkRightAngles(A,C,B)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.1.9. Option gold

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDefTriangle[gold](A,B)
\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above](A,B)
\tkzLabelPoints[below](C)
\tkzMarkRightAngle(A,B,C)
\tkzText(0,-2){\dfrac{AC}{AB} = \varphi}
\end{tikzpicture}
14.2. Specific triangles with \texttt{tkzDefSpcTriangle}

The centers of some triangles have been defined in the “points” section, here it is a question of determining the three vertices of specific triangles.

\begin{verbatim}
\texttt{\textbackslash tkzDefSpcTriangle[(local options)]((p1,p2,p3)) ((r1,r2,r3))}
\end{verbatim}

The order of the points is important! $p_1p_2p_3$ defines a triangle then the result is a triangle whose vertices have as reference a combination with \texttt{name} and \texttt{r1}, \texttt{r2}, \texttt{r3}. If \texttt{name} is empty then the references are \texttt{r1}, \texttt{r2} and \texttt{r3}.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>orthic</td>
<td>centroid</td>
<td>determined by endpoints of the altitudes ...</td>
</tr>
<tr>
<td>centroid or medial</td>
<td>centroid</td>
<td>intersection of the triangle's three triangle medians</td>
</tr>
<tr>
<td>in or incentral</td>
<td>centroid</td>
<td>determined with the angle bisectors</td>
</tr>
<tr>
<td>ex or excentrall</td>
<td>centroid</td>
<td>determined with the excenters</td>
</tr>
<tr>
<td>extouch</td>
<td>centroid</td>
<td>formed by the points of tangency with the excircles</td>
</tr>
<tr>
<td>intouch or contact</td>
<td>centroid</td>
<td>formed by the points of tangency of the incircle each of the vertices</td>
</tr>
<tr>
<td>euler</td>
<td>centroid</td>
<td>formed by Euler points on the nine-point circle</td>
</tr>
<tr>
<td>symmedial</td>
<td>centroid</td>
<td>intersection points of the symmedians</td>
</tr>
<tr>
<td>tangential</td>
<td>centroid</td>
<td>formed by the lines tangent to the circumcircle</td>
</tr>
<tr>
<td>feuerbach</td>
<td>centroid</td>
<td>formed by the points of tangency of the nine-point ... circle with the excircles</td>
</tr>
<tr>
<td>name</td>
<td>empty</td>
<td>used to name the vertices</td>
</tr>
</tbody>
</table>

14.2.1. How to name the vertices

With \texttt{\textbackslash tkzDefSpcTriangle[medial,name=M](A,B,C)\{A,B,C\}} you get three vertices named M_A, M_B and M_C.

With \texttt{\textbackslash tkzDefSpcTriangle[medial](A,B,C)\{a,b,c\}} you get three vertices named and labeled a, b and c.

Possible \texttt{\textbackslash tkzDefSpcTriangle[medial,name=M_](A,B,C)\{A,B,C\}} you get three vertices named M_A, M_B and M_C.

14.3. Option medial or centroid

The geometric centroid of the polygon vertices of a triangle is the point G (sometimes also denoted M) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle.

In the following example, we obtain the Euler circle which passes through the previously defined points.
14.3.1. Option in or incentral

The incentral triangle is the triangle whose vertices are determined by the intersections of the reference triangle's angle bisectors with the respective opposite sides.

Weisstein, Eric W. "Incentral triangle" From MathWorld–A Wolfram Web Resource.

14.3.2. Option ex or excentral

The excentral triangle of a triangle ABC is the triangle $J_aJ_bJ_c$ with vertices corresponding to the excenters of ABC.
14. Triangles

14.3.3. Option intouch or contact

The contact triangle of a triangle ABC, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of ABC with ABC. Weisstein, Eric W. "Contact triangle" From MathWorld–A Wolfram Web Resource. We obtain the intersections of the bisectors with the sides.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C)\tkzGetPoint{I}
\tkzDefCircle[in](A,B,C) \tkzGetPoints{I}{i}
\tkzDrawCircle(I,i)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[new](X_a,X_b,X_c)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](X_a,X_b,X_c)
\tkzLabelPoints[right](X_a)
\tkzLabelPoints[below](X_b)
\tkzLabelPoints[above](I)
\tkzLabelPoints[below](A,B,X_c)
\end{tikzpicture}

14.3.4. Option extouch

The extouch triangle $T_aT_bT_c$ is the triangle formed by the points of tangency of a triangle ABC with its excircles J_a, J_b, and J_c. The points T_a, T_b, and T_c can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at A, B, and C. Weisstein, Eric W. "Extouch triangle" From MathWorld–A Wolfram Web Resource. We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centers of the exinscribed circles.

\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[new](J_a,J_b,J_c)
\tkzClipBB
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[new](J_a,J_b,J_c)
\tkzLabelPoints(A,B,C)
\tkzLabelPoints[new](J_b,J_c)
\tkzLabelPoints[new,above](J_a)
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\end{tikzpicture}
14.3.5. Option orthic

Given a triangle ABC, the triangle $H_AH_BH_C$ whose vertices are endpoints of the altitudes from each of the vertices of ABC is called the orthic triangle, or sometimes the altitude triangle. The three lines AH_A, BH_B, and CH_C are concurrent at the orthocenter H of ABC.

\begin{tikzpicture}[scale=.7]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral, name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch, name=T](A,B,C){_a,_b,_c}
\tkzDefTriangleCenter[nagel](A,B,C)
\tkzGetPoint{N_a}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDefPointWith[normed,orthogonal](J_a,T_a)
\tkzGetPoint{a}
\tkzDrawPoints[new](J_a,J_b,J_c)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawLines[add=1 and 1](A,B B,C C,A)
\tkzDrawSegments[new](A,T_a B,T_b C,T_c)
\tkzDrawSegments[new](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[fill=teal!20,opacity=.3](A,B,C)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[below left](A)
\tkzDrawPoints[below right](C)
\tkzDrawPoints[new,above left](H_A)
\tkzDrawPoints[new,above right](H_B,H_C)
\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B J_b,T_b,C J_c,T_c,A)
\end{tikzpicture}
14.3.6. Option feuerbach

The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.

The points of tangency define the Feuerbach triangle.

14.3.7. Option tangential

The tangential triangle is the triangle \(T_a T_b T_c \) formed by the lines tangent to the circumcircle of a given triangle \(ABC \) at its vertices. It is therefore antipedal triangle of \(ABC \) with respect to the circumcenter \(O \).

14.3.8. Option euler

The Euler triangle of a triangle ABC is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter H with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle.

14.3.9. Option euler and Option orthic
14. Triangles

The symmedial triangle $K_AK_BK_C$ is the triangle whose vertices are the intersection points of the symmedians with the reference triangle ABC.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(.75,4){C}
\tkzDefTriangleCenter[symmedian](A,B,C) \tkzGetPoint{K}
\tkzDefSpcTriangle[symmedial,name=K](A,B,C){A,B,C}
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[new](A,K_A,B,K_B,C,K_C)
\tkzDrawPoints(A,B,C,K_A,K_B,K_C)
\tkzLabelPoints(A,B,K,K_A,K_B)
\tkzLabelPoints[right](K_C)
\end{tikzpicture}

14.4. Permutation of two points of a triangle

\begin{tabular}{|c|c|c|}
\hline
arguments & example & explanation \\
\hline
(pt1,pt2,pt3) & \tkzPermute(A,B,C) & A, B, A, C are unchanged, B, C exchange their position \\
\hline
\end{tabular}

The triangle is unchanged.
14.4.1. Modification of the school triangle

This triangle is constructed from the segment \([AB]\) on \([A,x)\).
If we want the segment \([AC]\) to be on \([A,x)\), we just have to swap \(B\) and \(C\).

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,6/0/x}
\tkzDefTriangle[school](A,B)
\tkzGetPoint{C}
\tkzPermute(A,B,C)
\tkzDrawSegments(A,B C,x)
\tkzDrawSegments(A,C B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C,x)
\tkzLabelPoints[above](B)
\tkzMarkRightAngles(C,B,A)
\end{tikzpicture}

Remark: Only the first point is unchanged. The order of the last two parameters is not important.

15. Definition of polygons

15.1. Defining the points of a square

We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons.

\begin{Verbatim}
\tkzDefSquare(⟨pt1,pt2⟩)
\end{Verbatim}

The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction.

The results are in \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}.
We can rename them with \texttt{tkzGetPoints}.

<table>
<thead>
<tr>
<th>Arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(⟨pt1,pt2⟩)</td>
<td>\tkzDefSquare(⟨A,B⟩)</td>
<td>The square is defined in the direct direction.</td>
</tr>
</tbody>
</table>

15.1.1. Using \texttt{tkzDefSquare} with two points

Note the inversion of the first two points and the result.

\begin{Verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B}
\tkzDefSquare(A,B)
\tkzDrawPolygon[new](A,B,tkzFirstPointResult,\%tkzSecondPointResult)
\tkzDefSquare(B,A)
\tkzDrawPolygon(B,A,tkzFirstPointResult,\%tkzSecondPointResult)
\end{tikzpicture}
\end{Verbatim}

We may only need one point to draw an isosceles right-angled triangle so we use \texttt{tkzGetFirstPoint} or \texttt{tkzGetSecondPoint}.

\texttt{tkz-euclide AlterMundus}
15. Definition of polygons

15.1.2. Use of \texttt{tkzDefSquare} to obtain an isosceles right-angled triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefSquare(A,B) \tkzGetFirstPoint{C}
\tkzDrawSegment(A,B)
\tkzDrawSegments[new](A,C B,C)
\tkzMarkRightAngles(A,B,C)
\tkzDrawPoints(A,B)
\tkzDrawPoint[new](C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[new,above](C)
\end{tikzpicture}

15.1.3. Pythagorean Theorem and \texttt{tkzDefSquare}

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){C}
\tkzDefPoint(4,0){A}
\tkzDefPoint(0,3){B}
\tkzDefSquare(B,A)\tkzGetPoints{E}{F}
\tkzDefSquare(A,C)\tkzGetPoints{G}{H}
\tkzDefSquare(C,B)\tkzGetPoints{I}{J}
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon(A,C,G,H)
\tkzDrawPolygon(C,B,I,J)
\tkzDrawPolygon(B,A,E,F)
\tkzLabelSegment(A,C){a}
\tkzLabelSegment[right](C,B){b}
\tkzLabelSegment[swap](A,B){c}
\end{tikzpicture}

15.2. Defining the points of a rectangle

\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/2/C}
\tkzDefRectangle(A,C) \tkzGetPoints{B}{D}
\tkzDrawPolygon[fill=teal!15](A,...,D)
\end{tikzpicture}

\begin{itemize}
\item \texttt{tkzDefRectangle((pt1,pt2))}
\end{itemize}

The rectangle is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a rectangle. The two points passed in arguments are the ends of a diagonal of the rectangle. The sides are parallel to the axes.

The results are in \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}.

We can rename them with \texttt{tkzGetPoints}.

<table>
<thead>
<tr>
<th>Arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>\texttt{tkzDefRectangle((A,B))}</td>
<td>The rectangle is defined in the direct direction.</td>
</tr>
</tbody>
</table>

15.2.1. Example of a rectangle definition

\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/2/C}
\tkzDefRectangle(A,C) \tkzGetPoints{B}{D}
\tkzDrawPolygon[fill=teal!15](A,...,D)
\end{tikzpicture}
15.3. Definition of parallelogram

Defining the points of a parallelogram. It is a matter of completing three points in order to obtain a parallelogram.

\input{tkz-euclide}
\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

From three points, another point is obtained such that the four taken in order form a parallelogram. The result is in \texttt{tkzPointResult}.

We can rename it with the name \texttt{tkzGetPoint}...

15.3.1. Example of a parallelogram definition

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
\tkzGetPoint{D}
\tkzDrawPolygon(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

15.4. The golden rectangle

The macro determines a rectangle whose size ratio is the number Φ. The created points are in \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult}.

They can be obtained with the macro \texttt{tkzGetPoints}. The following macro is used to draw the rectangle.

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefGoldRectangle(A,B) \tkzGetPoints{C}{D}
\tkzDefGoldRectangle(B,C) \tkzGetPoints{E}{F}
\tkzDefGoldRectangle(C,E) \tkzGetPoints{G}{H}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments(E,F G,H)
\end{tikzpicture}

15.4.1. Golden Rectangles

\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,8/8/B}
\tkzDefPointWith[colinear= at A](B,C)
\tkzDefGoldRectangle(A,B)
\tkzGetPoints{C}{D}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments(E,F G,H)
\end{tikzpicture}
15.4.2. Construction of the golden rectangle

Without the previous macro here is how to get the golden rectangle.

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefMidPoint(A,B)
\tkzGetPoint{I}
\tkzDefSquare(A,B)\tkzGetPoints{C}{D}
\tkzInterLC(A,B)(I,C)\tkzGetPoints{G}{E}
\tkzDefPointWith[colinear= at C](E,B)
\tkzGetPoint{F}
\tkzDefPointBy[projection=onto D--C](E)
\tkzGetPoint{H}
\tkzDrawArc[style=dashed](I,E)(D)
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(C,D,E,F,H)
\tkzLabelPoints(A,B,C,D,E,F,H)
\tkzLabelPoints[above](C,D,F,H)
\tkzDrawSegments[style=dashed,color=gray]%
(E,F C,F B,E F,H H,C E,H)
\end{tikzpicture}

15.5. Regular polygon

\tkzDefRegPolygon[\langle local_options \rangle](\langle pt1,pt2 \rangle)

From the number of sides, depending on the options, this macro determines a regular polygon according to its center or one side.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle pt1,pt2 \rangle</td>
<td>\langle O,A \rangle</td>
<td>with option "center", O is the center of the polygon.</td>
</tr>
<tr>
<td>\langle pt1,pt2 \rangle</td>
<td>\langle A,B \rangle</td>
<td>with option "side", [AB] is a side.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>P</td>
<td>The vertices are named P1,P2,…</td>
</tr>
<tr>
<td>sides</td>
<td>5</td>
<td>number of sides.</td>
</tr>
<tr>
<td>center</td>
<td>center</td>
<td>The first point is the center.</td>
</tr>
<tr>
<td>side</td>
<td>center</td>
<td>The two points are vertices.</td>
</tr>
<tr>
<td>Options TikZ</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

15.5.1. Option center

\begin{tikzpicture}
\tkzDefPoints{0/0/P0,0/0/Q0,2/0/P1}
\tkzDefMidPoint(P0,P1) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7](P0,P1)
\tkzDefMidPoint(P1,P2) \tkzGetPoint{Q1}
\tkzDefRegPolygon[center,sides=7,name=Q](P0,Q1)
\tkzFillPolygon[teal!20](Q0,Q1,P2,Q2)
\tkzDrawPolygon(P1,P...,P7)
\foreach \j in {1,...,7} {%
\tkzDrawSegment[black](P0,Q\j)}
\end{tikzpicture}
15.5.2. Option \texttt{side}

\begin{tikzpicture}[scale=1]
\tkzDefPoints{-4/0/A, -1/0/B}
\tkzDefRegPolygon[side,sides=5,name=P](A,B)
\tkzDrawPolygon[thick](P1,P...,P5)
\end{tikzpicture}
16. Circles

Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given center passing through a given point. This will be the default method, otherwise you will have to use the \texttt{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle.

- I have created a first macro \texttt{tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \texttt{tkzGetPoint} and \texttt{tkzGetLength};
- then a macro \texttt{tkzDrawCircle};
- then a macro that allows you to color in a disc, but without drawing the circle \texttt{tkzFillCircle};
- sometimes, it is necessary for a drawing to be contained in a disk, this is the role assigned to \texttt{tkzClipCircle};
- it finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \texttt{tkzLabelCircle}.

16.1. Characteristics of a circle: \texttt{tkzDefCircle}

This macro allows you to retrieve the characteristics (center and radius) of certain circles.

\begin{verbatim}
\tkzDefCircle[(local options)]((A,B) or ((A,B,C))
\end{verbatim}

Attention the arguments are lists of two or three points. This macro is either used in partnership with \texttt{tkzGetPoints} to obtain the center and a point on the circle, or by using \texttt{tkzFirstPointResult} and \texttt{tkzSecondPointResult} if it is not necessary to keep the results. You can also use \texttt{tkzGetLength} to get the radius.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((pt1,pt2)) or ((pt1,pt2,pt3)) ((A,B))</td>
<td>(AB) is radius (A) is the center</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{R}</td>
<td>circum</td>
<td>circle characterized by a center and a radius</td>
</tr>
<tr>
<td>\texttt{diameter}</td>
<td>circum</td>
<td>circle characterized by two points defining a diameter</td>
</tr>
<tr>
<td>\texttt{circum}</td>
<td>circum</td>
<td>circle circumscribed of a triangle</td>
</tr>
<tr>
<td>\texttt{in}</td>
<td>circum</td>
<td>incircle a triangle</td>
</tr>
<tr>
<td>\texttt{ex}</td>
<td>circum</td>
<td>excircle of a triangle</td>
</tr>
<tr>
<td>\texttt{euler or nine}</td>
<td>circum</td>
<td>Euler's Circle</td>
</tr>
<tr>
<td>\texttt{spieker}</td>
<td>circum</td>
<td>Spiiker Circle</td>
</tr>
<tr>
<td>\texttt{apollonius} from</td>
<td>circum</td>
<td>circle of Apollonius</td>
</tr>
<tr>
<td>\texttt{orthogonal from}</td>
<td>[orthogonal from = A](0,M)</td>
<td></td>
</tr>
<tr>
<td>\texttt{orthogonal through}</td>
<td>circum</td>
<td>[orthogonal through = A and B](0,M)</td>
</tr>
<tr>
<td>\texttt{K}</td>
<td>1</td>
<td>coefficient used for a circle of Apollonius</td>
</tr>
</tbody>
</table>

In the following examples, I draw the circles with a macro not yet presented. You may only need the center and a point on the circle.
16.1.1. Example with option \texttt{R}

We obtain with the macro $\texttt{tkzGetPoint}$ a point of the circle which is the East pole.

\begin{tikzpicture}[scale=1]
 \tkzDefPoint(3,3){C}
 \tkzDefPoint(5,5){A}
 \tkzCalcLength(A,C) \tkzGetLength{rAC}
 \tkzDefCircle[R](C,rAC) \tkzGetPoint{B}
 \tkzDrawCircle(C,B)
 \tkzDrawSegment(C,A)
 \tkzLabelSegment[above left](C,A){$2\sqrt{2}$}
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(A,C,B)
\end{tikzpicture}

16.1.2. Example with option \texttt{diameter}

It is simpler here to search directly for the middle of $[AB]$. The result is the center and if necessary

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,2){B}
 \tkzDefCircle[diameter](O,B) \tkzGetPoint{A}
 \tkzDrawCircle(A,B)
 \tkzDrawPoints(O,A,B)
 \tkzDrawSegment(O,B)
 \tkzLabelPoints(O,A,B)
 \tkzLabelSegment[above left](O,A){$\sqrt{2}$}
 \tkzLabelSegment[above left](A,B){$\sqrt{2}$}
 \tkzMarkSegments[mark=s||](O,A A,B)
\end{tikzpicture}

16.1.3. Circles inscribed and circumscribed for a given triangle

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
 \tkzDefPoint(1,-2){C}
 \tkzDefCircle[in](A,B,C)
 \tkzGetPoints{I}{x}
 \tkzDefCircle[circum](A,B,C)
 \tkzGetPoint{K}
 \tkzDrawCircles[new](I,x K,A)
 \tkzLabelPoints[below](B,C)
 \tkzLabelPoints[above left](A,I,K)
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C,I,K)
\end{tikzpicture}

16.1.4. Example with option \texttt{ex}

We want to define an excircle of a triangle relatively to point C

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
 \tkzDefPoint(1,-2){C}
 \tkzDefCircle[in](A,B,C)
 \tkzGetPoints{I}{x}
 \tkzDefCircle[circum](A,B,C)
 \tkzGetPoint{K}
 \tkzDrawCircles[new](I,x K,A)
 \tkzLabelPoints[below](B,C)
 \tkzLabelPoints[above left](A,I,K)
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C,I,K)
\end{tikzpicture}
16. Circles

16.1.5. Euler's circle for a given triangle with option euler

We verify that this circle passes through the middle of each side.

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C}
 \tkzDefCircle[ex](B,C,A)
 \tkzGetPoints{J_c}{h}
 \tkzDefPointBy[projection=onto A--C](J_c)
 \tkzGetPoint{X_c}
 \tkzDefPointBy[projection=onto A--B](J_c)
 \tkzGetPoint{Y_c}
 \tkzDefCircle[in](A,B,C)
 \tkzGetPoints{I}{y}
 \tkzDrawCircles[color=lightgray](J_c,h I,y)
 \tkzDefPointBy[projection=onto A--C](I)
 \tkzGetPoint{F}
 \tkzDefPointBy[projection=onto A--B](I)
 \tkzGetPoint{D}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawLines[add=0 and 1.5](C,A C,B)
 \tkzDrawSegments(J_c,X_c I,D I,F J_c,Y_c)
 \tkzMarkRightAngles(A,F,I B,D,I J_c,X_c,A J_c,Y_c,B)
 \tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c)
 \tkzLabelPoints(B,A,J_c,I,D)
 \tkzLabelPoints[above](Y_c)
 \tkzLabelPoints[above left](C)
 \tkzLabelPoints[above left](F)
\end{tikzpicture}

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(5,3.5){A}
 \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C}
 \tkzDefCircle[euler](A,B,C)
 \tkzGetPoints{E}{e}
 \tkzDefSpcTriangle[medial](A,B,C){M_a,M_b,M_c}
 \tkzDrawCircle[new](E,e)
 \tkzDrawPoints(B,C,A,I,D,F,X_c,J_c,Y_c)
 \tkzLabelPoints[above](Y_c)
 \tkzLabelPoints[left](X_c)
 \tkzLabelPoints[above left](C)
 \tkzLabelPoints[left](F)
\end{tikzpicture}
16. Circles

16.1.6. Apollonius circles for a given segment option `apollonius`

\begin{tikzpicture}[scale=0.75]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(4,0){B}
 \tkzDefCircle[apollonius,K=2](A,B)
 \tkzGetPoints{K1}{x}
 \tkzDrawCircle[color = teal!50!black, fill=teal!20,opacity=.4](K1,x)
 \tkzDefCircle[apollonius,K=3](A,B)
 \tkzGetPoints{K2}{y}
 \tkzDrawCircle[color=orange!50, fill=orange!20,opacity=.4](K2,y)
 \tkzLabelPoints[below](A,B,K1,K2)
 \tkzDrawPoints(A,B,K1,K2)
 \tkzDrawLine[add=.2 and 1](A,B)
\end{tikzpicture}

16.1.7. Circles exinscribed to a given triangle option `ex`

You can also get the center and the projection of it on one side of the triangle. with `\tkzGetFirstPoint{Jb}` and `\tkzGetSecondPoint{Tb}`.

\begin{tikzpicture}[scale=.6]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,0){B}
 \tkzDefPoint(1,2.5){C}
 \tkzDefCircle[ex](A,B,C) \tkzGetPoints{I}{i}
 \tkzDefCircle[ex](C,A,B) \tkzGetPoints{J}{j}
 \tkzDefCircle[ex](B,C,A) \tkzGetPoints{K}{k}
 \tkzDefCircle[in](B,C,A) \tkzGetPoints{O}{o}
 \tkzDrawCircles[new](J,j I,i K,k O,o)
 \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C)
 \tkzDrawPolygon[purple](I,J,K)
 \tkzDrawSegments[new](A,K B,J C,I)
 \tkzDrawPoints(A,B,C)
 \tkzDrawPoints[new](I,J,K)
 \tkzLabelPoints(A,B,C,I,J,K)
\end{tikzpicture}

16.1.8. Spieker circle with option `spieker`

The incircle of the medial triangle $M_aM_bM_c$ is the Spieker circle:

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,0){B}
 \tkzDefPoint(1,2.5){C}
 \tkzDefCircle[spieker](A,B,C) \tkzGetPoints{I}{i}
 \tkzDefCircle[spieker](C,A,B) \tkzGetPoints{J}{j}
 \tkzDefCircle[spieker](B,C,A) \tkzGetPoints{K}{k}
 \tkzDefCircle[spieker](B,C,A) \tkzGetPoints{O}{o}
 \tkzDrawCircles[new](J,j I,i K,k O,o)
 \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C)
 \tkzDrawPolygon[purple](I,J,K)
 \tkzDrawSegments[new](A,K B,J C,I)
 \tkzDrawPoints(A,B,C)
 \tkzDrawPoints[new](I,J,K)
 \tkzLabelPoints(A,B,C,I,J,K)
\end{tikzpicture}
16.2. Projection of excenters

Each excenter has three projections on the sides of the triangle ABC. We can do this with one macro

\begin{verbatim}
\tkzDefProjExcenter[⟨local options⟩](⟨A,B,C⟩)(⟨a,b,c⟩){⟨X,Y,Z⟩}
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>no default</td>
<td>used to name the vertices</td>
</tr>
<tr>
<td>arguments</td>
<td>default</td>
<td>definition</td>
</tr>
<tr>
<td>(pt1=α₁,pt2=α₂,...)</td>
<td>no default</td>
<td>Each point has a assigned weight</td>
</tr>
</tbody>
</table>
16.2.1. Excircles

\begin{tikzpicture}[scale=.6]
\tikzset{line style/.append style={line width=.2pt}}
\tikzset{label style/.append style={color=teal,font=\footnotesize}}
\tkzDefPoints{0/0/A,5/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c}
\tkzDefSpcTriangle[intouch,name=I](A,B,C){a,b,c}
\tkzDefProjExcenter[name=J](A,B,C)(a,b,c){X,Y,Z}
\tkzDefCircle[in](A,B,C) \tkzGetPoint{I} \tkzGetSecondPoint{T}
\tkzDrawCircles[red](Ja,Xa Jb,Yb Jc,Zc)
\tkzDrawCircle(I,T)
\tkzDrawPolygon[dashed,color=blue](Ja,Jb,Jc)
\tkzDrawLines[add=1.5 and 1.5](A,C A,B B,C)
\tkzDrawSegments(Ja,Xa Ja,Ya Ja,Ja
Jb,Xb Jb,Yb Jb,Zb
Jc,Xc Jc,Yc Jc,Zc
I,ia I,ib I,ic)
\tkzMarkRightAngles[size=.2,fill=gray!15](Ja,Za,B Ja,Xa,B Ja,Ya,C Jb,Xb,C)
\tkzMarkRightAngles[size=.2,fill=gray!15](Jb,Zb,B Jb,Xb,C Jc,Yc,A Jc,Zc,B Jc,Xc,C I,ia,B I,ib,C I,ic,A)
\tkzDrawSegments[blue](Jc,C Ja,A Jb,B)
\tkzDrawPoints(A,B,C,Xa,Xb,Xc,Ja,Jb,Jc,Ia,lb,Ya,Yb,Yc,Za,Zb,Zc)
\tkzLabelPoints(O,A,B,C)
\tkzLabelPoints[left](Jb,ib,Yc)
\tkzLabelPoints[below](Zb,Ic,Jb,Ba,Xa)
\tkzLabelPoints[above right](C,Zc,Yb)
\tkzLabelPoints[right](Xb,Ia,Xc)
\end{tikzpicture}

\subsection{Orthogonal from}

Orthogonal circle of given center. \texttt{\tkzGetPoints{z1}{z2}} gives two points of the circle.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,1/0/A}
\tkzDefPoints{1.5/1.25/B,-2/-3/C}
\tkzDefCircle[orthogonal from=B](O,A)
\tkzGetPoints{z1}{z2}
\tkzDefCircle[orthogonal from=C](O,A)
\tkzGetPoints{t1}{t2}
\tkzDrawCircle(O,A)
\tkzDrawCircles[new](B,z1 C,t1)
\tkzDrawPoints(t1,t2,C)
\tkzDrawPoints(z1,z2,O,A,B)
\tkzLabelPoints[right](O,A,B,C)
\end{tikzpicture}

\subsection{Orthogonal through}

Orthogonal circle passing through two given points.

\begin{tikzpicture}[scale=.8]
\end{tikzpicture}
16.3. Definition of circle by transformation; \texttt{\textbackslash \tkzDefCircleBy}

These transformations are:

- translation;
- homothety;
- orthogonal reflection or symmetry;
- central symmetry;
- orthogonal projection;
- rotation (degrees);
- inversion.

The choice of transformations is made through the options. The macro \texttt{\tkzDefCircleBy} and the other for the transformation of a list of points \texttt{\tkzDefCirclesBy}. For example, we'll write:

\begin{verbatim}
\tkzDefCircleBy[translation= from A to A'](O,M)
\end{verbatim}

O is the center and M is a point on the circle. The image is a circle. The new center is \tkzFirstPointResult and \tkzSecondPointResult is a point on the new circle. You can get the results with the macro \texttt{\tkzGetPoints}.

\begin{verbatim}
\tkzDefCircleBy[(local options)]((pt1,pt2))
\end{verbatim}

The argument is a couple of points. The results is a couple of points. If you want to keep these points then the macro \texttt{\tkzGetPoints{O'}{M'}} allows you to assign the name O' to the center and M' to the point on the circle.

<table>
<thead>
<tr>
<th>arguments</th>
<th>definition</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>pt1,pt2</td>
<td>existing points (O,M)</td>
<td></td>
</tr>
<tr>
<td>options</td>
<td></td>
<td>examples</td>
</tr>
<tr>
<td>translation</td>
<td>= from #1 to #2</td>
<td>translation=from A to B</td>
</tr>
<tr>
<td>homothety</td>
<td>= center #1 ratio #2</td>
<td>homothety=center A ratio .5</td>
</tr>
<tr>
<td>reflection</td>
<td>= over #1--#2</td>
<td>reflection=over A--B</td>
</tr>
<tr>
<td>symmetry</td>
<td>= center #1</td>
<td>symmetry=center A</td>
</tr>
<tr>
<td>projection</td>
<td>= onto #1--#2</td>
<td>projection=onto A--B</td>
</tr>
<tr>
<td>rotation</td>
<td>= center #1 angle #2</td>
<td>rotation=center 0 angle 30</td>
</tr>
<tr>
<td>inversion</td>
<td>= center #1 through #2</td>
<td>inversion=center 0 through A</td>
</tr>
</tbody>
</table>

The image is only defined and not drawn.

\texttt{tkz-euclide} \hfill AlterMundus
16.3.1. Translation

\begin{tikzpicture}[>=latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} \tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[translation= from B to A](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,B,C,D,C',D')
\tkzDrawSegments[orange,->](A,B)
\tkzDrawCircles(C,D C',D')
\tkzLabelPoints[color=teal](A,B,C,C')
\tkzLabelPoints[color=teal,above](D,D')
\end{tikzpicture}

16.3.2. Reflection (orthogonal symmetry)

\begin{tikzpicture}[>=latex]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} \tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[reflection = over A--B](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,B,C,D,C',D')
\tkzDrawLine[add =0 and 1][orange](A,B)
\tkzDrawCircles(C,D C',D')
\tkzLabelPoints[color=teal](A,B,C,C')
\tkzLabelPoints[color=teal,right](D,D')
\end{tikzpicture}

16.3.3. Homothety

\begin{tikzpicture}[scale=1.2]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B} \tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[homothety=center A ratio .5](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](A,C,D,C',D')
\tkzDrawCircles(C,D C',D')
\tkzLabelPoints[color=teal](A,C,C')
\tkzLabelPoints[color=teal,right](D,D')
\end{tikzpicture}
16.3.4. Symmetry

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A} \tkzDefPoint(3,1){B}\tkzDefPoint(3,2){C} \tkzDefPoint(4,3){D}
\tkzDefCircleBy[symmetry=center B](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](B,C,D,C',D')
\tkzDrawLines[orange](C,C',D,D')
\tkzDrawCircles(C,D,C',D')
\tkzLabelPoints[color=teal](A,C,C')
\tkzLabelPoints[color=teal,above](D)
\tkzLabelPoints[color=teal,below](D')
\end{tikzpicture}

16.3.5. Rotation

\begin{tikzpicture}[scale=0.5]
\tkzDefPoint(3,-1){B}\tkzDefPoint(3,2){C}\tkzDefPoint(4,3){D}
\tkzDefCircleBy[rotation=center B angle 90](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints[teal](B,C,D,C',D')
\tkzLabelPoints[teal](B,C,D,C',D')
\tkzDrawCircles(C,D,C',D')
\end{tikzpicture}

16.3.6. Inversion

\begin{tikzpicture}[scale=1.5]
\tkzSetUpPoint[size=3,color=red,fill=red!20]
\tkzSetUpStyle[color=purple,ultra thin]{st1}
\tkzSetUpStyle[color=cyan,ultra thin]{st2}
\tkzDefPoint(2,0){A}\tkzDefPoint(3,0){B}\tkzDefPoint(3,2){C}\tkzDefPoint(4,2){D}
\tkzDefCircleBy[inversion = center B through A](C,D)
\tkzGetPoints{C'}{D'}
\tkzDrawPoints(A,B,C,D,C',D')
\tkzLabelPoints(A,B,C,D,C',D')
\tkzDrawCircles(B,A)
\tkzDrawCircles[st1](C,D)
\tkzDrawCircles[st2](C',D')
\end{tikzpicture}

17. Intersections

It is possible to determine the coordinates of the points of intersection between two straight lines, a straight line and a circle, and two circles. The associated commands have no optional arguments and the user must determine the existence of the intersection points himself.
17. Intersections

17.1. Intersection of two straight lines \tkzInterLL

\tkzInterLL((A,B))((C,D))

Defines the intersection point \tkzPointResult of the two lines \(AB\) and \(CD\). The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \tkzDefPoint.

17.1.1. Example of intersection between two straight lines

\begin{tikzpicture}[rotate=-45,scale=.75]
\tkzDefPoint(2,1){A}
\tkzDefPoint(6,5){B}
\tkzDefPoint(3,6){C}
\tkzDefPoint(5,2){D}
\tkzDrawLines(A,B C,D)
\tkzInterLL(A,B)(C,D)
\tkzGetPoint{I}
\tkzDrawPoints[A]{A,B,C,D}
\tkzDrawPoint[color=red]{I}
\end{tikzpicture}

17.2. Intersection of a straight line and a circle \tkzInterLC

As before, the line is defined by a couple of points. The circle is also defined by a couple:

– \((O,C)\) which is a pair of points, the first is the center and the second is any point on the circle.
– \((O,r)\) The \(r\) measure is the radius measure.

\tkzInterLC[(\text{options})](⟨A,B⟩)(⟨O,C⟩) or (⟨O,r⟩) or (⟨O,C,D⟩)

So the arguments are two couples.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>((O,C)) determines the circle</td>
</tr>
<tr>
<td>R</td>
<td>N</td>
<td>((0,1)) unit 1 cm</td>
</tr>
<tr>
<td>with nodes</td>
<td>N</td>
<td>((0,C,D)) (CD) is a radius</td>
</tr>
<tr>
<td>common=pt</td>
<td>pt</td>
<td>pt is common point; \tkzFirstPoint gives the other point</td>
</tr>
<tr>
<td>near</td>
<td></td>
<td>\tkzFirstPoint is the closest point to the first point of the line</td>
</tr>
</tbody>
</table>

The macro defines the intersection points \(I\) and \(J\) of the line \(AB\) and the center circle \(O\) with radius \(r\) if they exist; otherwise, an error will be reported in the \texttt{.log} file. \texttt{with nodes} avoids you to calculate the radius which is the length of \([CD]\). If \texttt{common} and \texttt{near} are not used then \texttt{tkzFirstPoint} is the smallest angle (angle with \texttt{tkzSecondPoint} and the center of the circle).

\tkzTestInterLC((O,A))((O',B))

So the arguments are two couples which define a line and a circle with a center and a point on the circle. If there is a non empty intersection between these the line and the circle then the test \texttt{iftkzFlagLC} gives true.
17.2.1. test line-circle intersection

\begin{tikzpicture}[scale=1]
\tkzDefPoints{3/4/I, 3/2/P, 0/2/La, 8/3/Lb}
\tkzDrawCircle(I,P)
\foreach \i in {1,...,3}{% \coordinate (Lb) at (8,\i);
\tkzDrawLine(La,Lb)
\tkzTestInterLC(La,Lb)(I,P)
\iftkzFlagLC
\tkzInterLC(La,Lb)(I,P)
\tkzGetPoints{a}{b}
\tkzDrawPoints(a,b)
\fi}
\end{tikzpicture}

17.2.2. Line-circle intersection

In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points. We will compare the angles \hat{D}, E, O and \hat{E}, D, O. These angles are in opposite directions. \texttt{tkzFirstPoint} is assigned to the point that forms the angle with the smallest measure (counterclockwise direction). The counterclockwise angle \hat{D}, E, O has a measure equal to 360° minus the measure of \hat{O}, E, D.

\begin{tikzpicture}[scale=.75]
\tkzInit[xmax=5,ymax=4]
\tkzDefPoint(1,1){O}
\tkzDefPoint(-2,4){La}
\tkzDefPoint(5,0){Lb}
\tkzDefPoint(3,3){C}
\tkzInterLC(La,Lb)(O,C) \tkzGetPoints{D}{E}
\tkzMarkAngle[->,size=1.5](E,D,O)
\tkzDrawPolygons[new](O,D,E)
\tkzMarkAngle[->,size=1.5](D,E,O)
\tkzDrawCircle(O,C)
\tkzDrawPoints[color=teal](O,La,Lb,C)
\tkzDrawPoints[color=red](D,E)
\tkzDrawLine(La,Lb)
\tkzLabelPoints[above right](O,La,Lb,C,D,E)
\end{tikzpicture}

17.2.3. Line passing through the center option common

This case is special. You cannot compare the angles. In this case, the option \texttt{near} must be used. \texttt{tkzFirstPoint} is assigned to the point closest to the first point given for the line. Here we want A to be closest to Lb.
17. Intersections

17.2.4. Line-circle intersection with option common

A special case that we often meet, a point of the line is on the circle and we are looking for the other common point.

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{8/8/0,-5/0/A,2/-2/B,0/5/D}
\tkzInterLC[common=A](B,A)(O,D)
\tkzGetFirstPoint{C}
\tkzDrawPoints(O,A,B)
\tkzDrawCircle(O,A)
\tkzDrawLine(A,C)
\tkzDrawPoint(C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}

17.2.5. Line-circle intersection order of points

The idea is to compare the angles formed with the first defining point of the line, a resultant point and the center of the circle. The first point is the one that corresponds to the smallest angle.

As you can see $\hat{BCO} < \hat{BEO}$. To tell the truth, \hat{BEO} is counterclockwise.
17. Intersections

17.2.6. Example with `\foreach`

\begin{tikzpicture}[scale=3,rotate=180]
\tkzDefPoint(O,1){J}
\tkzDefPoint(0,0){O}
\foreach \i in {0,-5,-10,...,-90} {
\tkzDefPoint({2.5*cos(\i*pi/180)},{1+2.5*sin(\i*pi/180)}){P}
\tkzInterLC[R](P,J)(O,1){N}{M}
\tkzDrawSegment[color=orange](J,N)
\tkzDrawPoints[red](N)}
\foreach \i in {-90,-95,...,-175,-180} {
\tkzDefPoint({2.5*cos(\i*pi/180)},{1+2.5*sin(\i*pi/180)}){P}
\tkzInterLC[R](P,J)(O,1){N}{M}
\tkzDrawSegment[color=orange](J,M)
\tkzDrawPoints[red](M)}
\end{tikzpicture}

17.2.7. Line-circle intersection with option `near`

D is the point closest to b.
17.2.8. More complex example of a line-circle intersection

Figure from http://gogeometry.com/problem/p190_tangent_circle

17.2.9. Circle defined by a center and a measure, and special cases

Let’s look at some special cases like straight lines tangent to the circle.
17.2.10. Calculation of radius

With \texttt{pgfmath} and \texttt{pgfmathsetmacro}

The radius measurement may be the result of a calculation that is not done within the intersection macro, but before. A length can be calculated in several ways. It is possible of course, to use the module \texttt{pgfmath} and the macro \texttt{pgfmathsetmacro}. In some cases, the results obtained are not precise enough, so the following calculation \(0.0002 ÷ 0.0001\) gives 1.98 with pgfmath while xfp will give 2.

With \texttt{xfp} and \texttt{fpeval}:

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDefPoint(4,4){O}
\pgfmathsetmacro\tkzLen{\fpeval{0.0002/0.0001}}% or \edef\tkzLen{\fpeval{0.0002/0.0001}}
\tkzInterLC[R](A,B)(O,\tkzLen)
\tkzGetPoints{I}{J}
\tkzDrawCircle(O,I)
\tkzDrawPoints[color=blue](A,B)
\tkzDrawPoints[color=red](I,J)
\tkzDrawLine(I,J)
\end{tikzpicture}
\end{verbatim}
17.2.11. Option "with nodes"

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E}
\tkzDefTriangle[equilateral](A,B)
\tkzGetPoint{C}
\tkzInterLC[with nodes](D,E)(C,A,B)
\tkzGetPoints{F}{G}
\tkzDrawCircle(C,A)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,...,G)
\tkzDrawLine(F,G)
\end{tikzpicture}

17.3. Intersection of two circles \tkzInterCC

The most frequent case is that of two circles defined by their center and a point, but as before the option \texttt{R} allows to use the radius measurements.

\begin{verbatim}
\tkzInterCC[\texttt{(options)}](\langle O, A \rangle)(\langle O', A' \rangle) or (\langle O, r \rangle)(\langle O', r' \rangle) or (\langle O, A, B \rangle) (\langle O', C, D \rangle)
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>\texttt{OA} and \texttt{O'A'} are radii, \texttt{O} and \texttt{O'} are the centers.</td>
</tr>
<tr>
<td>R</td>
<td>N</td>
<td>\texttt{r} and \texttt{r'} are dimensions and measure the radii.</td>
</tr>
<tr>
<td>with nodes</td>
<td>N</td>
<td>\texttt{in} \texttt{(A, A, C)(C, B, F)} \texttt{AC} and \texttt{BF} give the radii.</td>
</tr>
<tr>
<td>common=pt</td>
<td>pt</td>
<td>\texttt{pt is common point; \texttt{tkzFirstPoint} gives the other point.}</td>
</tr>
</tbody>
</table>

This macro defines the intersection point(s) \(I\) and \(J\) of the two center circles \(O\) and \(O'\). If the two circles do not have a common point then the macro ends with an error that is not handled. If the centers are \(O\) and \(O'\) and the intersections are \(A\) and \(B\) then the angles \(\hat{\texttt{O, A, O'}}\) and \(\hat{\texttt{O, B, O'}}\) are in opposite directions. \texttt{tkzFirstPoint} is assigned to the point that forms the "clockwise" angle.

\begin{verbatim}
\tkzTestInterCC((O,A))((O',B))
\end{verbatim}

So the arguments are two couples which define two circles with a center and a point on the circle. If there is a non empty intersection between these two circles then the test \texttt{iftkzFlagCC} gives true.
17.3.1. test circle-circle intersection

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0 /0 /A, 2 /0 /B, 4 /0 /I, 1 /0 /P}
\tkzDrawCircle(A,B)
\foreach \i in {1,...,3}{\coordinate (P) at (\i,0); \tkzDrawCircle[new](I,P)
\tkzTestInterCC(A,B)(I,P) \iftkzFlagCC \tkzInterCC(A,B)(I,P) \tkzGetPoints{a}{b}\tkzDrawPoints(a,b)\fi}
\end{tikzpicture}

17.3.2. circle-circle intersection with common point.

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/O,5/-1/A,2/2/B}
\tkzDrawPoints(O,A,B)
\tkzDrawCircles(O,B A,B) \tkzInterCC[common=B](O,B)(A,B) \tkzGetFirstPoint{C}
\tkzDrawPoint(C)
\tkzLabelPoints[above](O,A,B,C)
\end{tikzpicture}

17.3.3. circle-circle intersection order of points.

The idea is to compare the angles formed with the first center, a resultant point and the center of the second circle. The first point is the one that corresponds to the smallest angle.

As you can see $\angle ODB < \angle OBE$

\begin{tikzpicture}[scale=.5]
\pgfkeys{/pgf/number format/.cd, fixed relative, precision=4}
\tkzDefPoints{0/0/O,5/-1/A,2/2/B,2/-1/C}
\tkzDrawPoints(O,A,B)
\tkzDrawCircles(O,A B,C) \tkzInterCC(O,A)(B,C) \tkzGetPoints{D}{E}
\tkzDrawPoints(C,D,E)
\tkzLabelPoints(O,A,B,C)
\tkzLabelPoints[above](D,E)
\tkzDrawSegments[cyan](D,O D,B)
\tkzMarkAngle[red,->,size=1.5](O,D,B) \tkzGetAngle{an}
\tkzFindAngle(O,D,B) \tkzGetAngle{an}
\tkzLabelAngle(O,D,B){$\pgfmathprintnumber{\an}$}
\tkzDrawSegments[cyan](E,O E,B)
\tkzMarkAngle[red,->,size=1.5](O,E,B) \tkzGetAngle{an}
\tkzFindAngle(O,E,B) \tkzGetAngle{an}
\tkzLabelAngle(O,E,B){$\pgfmathprintnumber{\an}$}
\end{tikzpicture}
17.3.4. Construction of an equilateral triangle.

A, C, B is a clockwise angle

\begin{tikzpicture}[trim left=-1cm,scale=.5]
\tkzDefPoint(1,1){A}
\tkzDefPoint(5,1){B}
\tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D}
\tkzDrawPoint[black](C)
\tkzDrawCircles(A,B,B,A)
\tkzCompass[red](A,C)
\tkzCompass[red](B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkSegments[s|](A,C B,C)
\tkzLabelPoints[above](C)
\tkzLabelPoints[below](A,B)
\tkzLabelPoint[above](C)
\end{tikzpicture}

17.3.5. Segment trisection

The idea here is to divide a segment with a ruler and a compass into three segments of equal length.

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,2){B}
\tkzInterCC(A,B)(B,A)\tkzGetSecondPoint{D}
\tkzInterCC(D,B)(B,A)\tkzGetPoints{A}{C}
\tkzInterCC(D,B)(A,B)\tkzGetPoints{E}{B}
\tkzInterLC[common=D](C,D)(E,D)\tkzGetFirstPoint{F}
\tkzInterLL(A,F)(B,C)\tkzGetPoint{O}
\tkzInterLL(O,D)(A,B)\tkzGetPoint{H}
\tkzInterLL(O,E)(A,B)\tkzGetPoint{G}
\tkzDrawCircles(D,E,A,B,A,E,A)
\tkzDrawSegments[](O,F 0,B 0,D 0,E)
\tkzDrawPoints(A,...,H)
\tkzDrawSegments(A,B B,D A,D A,E,F C,F B,C)
\tkzMarkSegments[s|](A,G G,H H,B)
\end{tikzpicture}
17.3.6. With the option "with nodes"

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,0/5/B,5/0/C}
\tkzDefPoint(54:5){F}
\tkzInterCC[with nodes](A,A,C)(C,B,F)
\tkzGetPoints{a}{e}
\tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b}
\tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c}
\tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d}
\tkzDrawCircle[new](A,C)
\tkzDrawPoints(a,b,c,d,e)
\tkzDrawPolygon(a,b,c,d,e)
\foreach \vertex/\num in {a/36,b/108,c/180,d/252,e/324}{%
\tkzDrawPoint(\vertex)
\tkzLabelPoint[label=\num:\vertex](\vertex){}
\tkzDrawSegment(A,\vertex)}
\end{tikzpicture}

17.3.7. Mix of intersections

\begin{tikzpicture}[scale = .75]
\tkzDefPoint(2,2){A}
\tkzDefPoint(0,0){B}
\tkzDefPoint(-2,2){C}
\tkzDefPoint(0,4){D}
\tkzDefPoint(4,2){E}
\tkzCircumCenter(A,B,C)\tkzGetPoint{O}
\tkzInterCC[R](O,2)(D,2) \tkzGetPoints{M1}{M2}
\tkzInterCC(O,A)(D,O) \tkzGetPoints{1}{2}
\tkzInterLC(A,E)(B,M1) \tkzGetSecondPoint{M3}
\tkzInterLC(O,C)(M3,D) \tkzGetSecondPoint{L}
\tkzDrawSegments(C,L)
\tkzDrawPoints(A,B,C,D,E,M1,M2,M3,O,L)
\tkzDrawSegments(O,E)
\tkzDrawSegments[new](C,A D,B)
\tkzDrawPoint(0)
\tkzDrawCircles[new](M3,D B,M2 D,0)
\tkzDrawCircle(0,A)
\tkzLabelPoints[below right]{A,B,C,D,E,M1,M2,M3,0,L}
\end{tikzpicture}

17.3.8. Altshiller-Court's theorem

The two lines joining the points of intersection of two orthogonal circles to a point on one of the circles met the other circle in two diametrical oposite points. Altshiller p 176
18. Angles

18.1. Definition and usage with \texttt{tkz-euclide}

In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle.\cite{Wikipedia}. A ray with \texttt{tkz-euclide} is defined by two points also each angle is defined with three points like \widehat{AOB}. The vertex O is the second point. Their order is important because it is assumed that the angle is specified in the direct order (counterclockwise). In trigonometry and mathematics in general, plane angles are conventionally measured counterclockwise, starting with 0° pointing directly to the right (or east), and 90° pointing straight up (or north)\cite{Wikipedia}. Let us agree that an angle measured counterclockwise is positive.
18. Angles

Angles are involved in several macros like \texttt{\tkzDefPoint, \tkzDefPointBy [rotation = \ldots]}, \texttt{\tkzDrawArc} and the next one \texttt{\tkzGetAngle}. With the exception of the last one, all these macros accept negative angles.

As we can see, the -80° rotation defines a clockwise angle but the macro \texttt{\tkzFindAngle} recovers a counterclockwise angle.

18.2. Recovering an angle \texttt{\tkzGetAngle}

\begin{verbatim}
\tkzGetAngle(name of macro)
\end{verbatim}

Assigns the value in degree of an angle to a macro. The value is positive and between 0° and 360°. This macro retrieves \texttt{\tkzAngleResult} and stores the result in a new macro.

\begin{tabular}{lll}
arguments & example & explanation \\
\hline
name of macro & \texttt{\tkzGetAngle(ang)} & \texttt{ang} contains the value of the angle.
\end{tabular}

This is an auxiliary macro that allows you to retrieve the result of the following macro \texttt{\tkzFindAngle}.

18.3. Angle formed by three points

\begin{verbatim}
\tkzFindAngle(pt1,pt2,pt3)
\end{verbatim}

The result is stored in a macro \texttt{\tkzAngleResult}.

\begin{tabular}{lll}
arguments & example & explanation \\
\hline
(pt1,pt2,pt3) & \texttt{\tkzFindAngle(A,B,C)} & \texttt{\tkzAngleResult} gives the angle ($\overrightarrow{BA}, \overrightarrow{BC}$)
\end{tabular}
The measure is always positive and between 0° and 360°. With the usual conventions, a counterclockwise angle smaller than a straight angle has always a measure between 0° and 180°, while a clockwise angle smaller than a straight angle will have a measurement greater than 180°. \texttt{tkzGetAngle} can retrieve the angle.

18.3.1. Verification of angle measurement

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(-1,1){A}
\tkzDefPoint(5,2){B}
\tkzDefEquilateral(A,B)
\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzFindAngle(B,A,C) \tkzGetAngle{angleBAC}
\edef\angleBAC{\fpeval{round(\angleBAC)}}
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoint[right](C){C}
\tkzLabelAngle(B,A,C){\angleBAC$^\circ$}
\tkzMarkAngle[size=1.5](B,A,C)
\end{tikzpicture}

18.3.2. Determination of the three angles of a triangle

\begin{tikzpicture}
\tikzset{label angle style/.append style={pos=1.4}}
\tkzDefPoints{0/0/a,5/3/b,3/6/c}
\tkzDrawPolygon(a,b,c)
\tkzFindAngle(c,b,a)\tkzGetAngle{angleCBA}
\pgfmathparse{round(1+\angleCBA)}
\let\angleCBA\pgfmathresult
\tkzFindAngle(a,c,b)\tkzGetAngle{angleACB}
\pgfmathparse{round(\angleACB)}
\let\angleACB\pgfmathresult
\tkzFindAngle(b,a,c)\tkzGetAngle{angleBAC}
\pgfmathparse{round(\angleBAC)}
\let\angleBAC\pgfmathresult
\tkzMarkAngle(c,b,a)
\tkzLabelAngle(c,b,a){\tiny \angleCBA°}
\tkzMarkAngle(a,c,b)
\tkzLabelAngle(a,c,b){\tiny \angleACB°}
\tkzMarkAngle(b,a,c)
\tkzLabelAngle(b,a,c){\tiny \angleBAC°}
\end{tikzpicture}

18.3.3. Angle between two circles

We are looking for the angle formed by the tangents at a point of intersection
18.4. Angle formed by a straight line with the horizontal axis \(\texttt{tkzFindSlopeAngle} \)

Much more interesting than the last one. The result is between -180 degrees and +180 degrees.

\[
\texttt{\textbackslash tkzFindSlopeAngle((A,B))}
\]

Determines the slope of the straight line (AB). The result is stored in a macro \(\texttt{tkzAngleResult} \).

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>\texttt{tkzFindSlopeAngle(A,B)}</td>
<td></td>
</tr>
</tbody>
</table>

\(\texttt{tkzGetAngle} \) can retrieve the result. If retrieval is not necessary, you can use \(\texttt{tkzAngleResult} \).

18.4.1. How to use \(\texttt{tkzFindSlopeAngle} \)

The point here is that (AB) is the bisector of \(\widehat{CAD} \), such that the AD slope is zero. We recover the slope of (AB) and then rotate twice.

\[
\begin{align*}
\begin{tikzpicture}
\tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B} \\
\tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} \\
\tkzDefPointBy[rotation= center A angle \tkzang](B)\tkzGetPoint{C} \\
\tkzFindPointBy[rotation= center A angle -\tkzang](B)\tkzGetPoint{D} \\
\tkzDrawSegment(A,B) \\
\tkzDrawSegment{new}(A,C A,D) \\
\tkzDrawPoints(A,B,C,D) \\
\tkzCompass[length=1](A,C) \\
\tkzCompass[delta=10, brown](B,C) \\
\tkzLabelPoints(B,C,D) \\
\tkzLabelPoints[above left](A) \\
\end{tikzpicture}
\end{align*}
\]

18.4.2. Use of \(\texttt{tkzFindSlopeAngle} \) and \(\texttt{tkzGetAngle} \)

Here is another version of the construction of a mediator.
19. Random point definition

At the moment there are four possibilities:

1. point in a rectangle;
2. on a segment;
3. on a straight line;
4. on a circle.

19.1. Obtaining random points

This is the new version that replaces \tkzGetRandPointOn.

\begin{tikzpicture}
\tkzInit
\tkzDefPoint(0,0){A} \tkzDefPoint(3,2){B}
\tkzDefLine[mediator](A,B) \tkzGetPoints{I}{J}
\tkzCalcLength(A,B) \tkzGetLength{dAB}
\tkzFindSlopeAngle(A,B) \tkzGetAngle{tkzangle}
\begin{scope}[rotate=\tkzangle]
\tkzSetUpArc[color=gray,line width=0.2pt,/tkzcompass/delta=10]
\tkzDrawArc[R,arc](B,3/4\times dAB)(120,240)
\tkzDrawArc[R,arc](A,3/4\times dAB)(-45,60)
\tkzDrawLine(I,J) \tkzDrawSegment(A,B)
\end{scope}
\tkzDrawPoints(A,B,I,J) \tkzLabelPoints(A,B)
\tkzLabelPoints[right](I,J)
\end{tikzpicture}

18.4.3. Another use of \tkzFindSlopeAngle

The slope of (AB) is : \text{45}°
The slope of (AC) is : \text{0}°
The slope of (AD) is : \text{333.43}°

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(1,2){A} \tkzDefPoint(3,4){B}
\tkzDefPoint(3,2){C} \tkzDefPoint(3,1){D}
\tkzDrawSegments(A,B A,C A,D)
\tkzDrawPoints[color=red](A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\tkzFindSlopeAngle(A,B) \tkzGetAngle{SAB}
\tkzFindSlopeAngle(A,C) \tkzGetAngle{SAC}
\tkzFindSlopeAngle(A,D) \tkzGetAngle{SAD}
\pgfkeys{/pgf/number format/.cd, fixed, precision=2}
\tkzText(1,5){The slope of (AB) is : \pgfmathprintnumber{\SAB}°}
\tkzText(1,4.5){The slope of (AC) is : \pgfmathprintnumber{\SAC}°}
\tkzText(1,4){The slope of (AD) is : \pgfmathprintnumber{\SAD}°}
\end{tikzpicture}
The result is a point with a random position that can be named with the macro \texttt{tkzGetPoint}. It is possible to use \texttt{tkzPointResult} if it is not necessary to retain the results.

<table>
<thead>
<tr>
<th>options</th>
<th>default definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangle=pt1 and pt2</td>
<td>[rectangle=A and B]</td>
</tr>
<tr>
<td>segment=pt1--pt2</td>
<td>[segment=A--B]</td>
</tr>
<tr>
<td>line=pt1--pt2</td>
<td>[line=A--B]</td>
</tr>
<tr>
<td>circle =center pt1 radius dim</td>
<td>[circle = center A radius 2]</td>
</tr>
<tr>
<td>circle through=center pt1 through pt2</td>
<td>[circle through= center A through B]</td>
</tr>
<tr>
<td>disk through=center pt1 through pt2</td>
<td>[disk through=center A through B]</td>
</tr>
</tbody>
</table>

19.1.1. Random point in a rectangle

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,5/3/C}
 \tkzDefRandPointOn[rectangle = A and C]
 \tkzGetPoint{E}
 \tkzDefRectangle(A,C) \tkzGetPoints{B}{D}
 \tkzDrawPolygon[red](A,...,D)
 \tkzDrawPoints(A,...,E)
 \tkzLabelPoints(A,B)
 \tkzLabelPoints[above](C,D,E)
\end{tikzpicture}

19.1.2. Random point on a segment or a line

\begin{tikzpicture}
 \tkzDefPoints{0/0/A,5/2/C}
 \tkzDefRandPointOn[segment = A--C]
 \tkzGetPoint{B}
 \tkzDrawLine(A,C)
 \tkzDrawPoints(A,C) \tkzDrawPoint[red](B)
 \tkzLabelPoints(A,C) \tkzLabelPoints[red](B)
\end{tikzpicture}

19.1.3. Random point on a circle or a disk

\begin{tikzpicture}
 \tkzDefPoints{3/2/A,1/1/B}
 \tkzCalcLength(A,B) \tkzGetLength{rAB}
 \tkzDefRandPointOn[circle = center A radius \rAB]
 \tkzGetPoint{C}
 \tkzDefRandPointOn[circle through= center A through B]
 \tkzGetPoint{D}
 \tkzDefRandPointOn[disk through=center A through B]
 \tkzGetPoint{E}
 \tkzDrawCircle(A,B)
 \tkzDrawPoints(A,B)
 \tkzLabelPoints(A,B)
 \tkzDrawPoints[red](C,D,E)
 \tkzLabelPoints[red,right](C,D,E)
\end{tikzpicture}
Part IV.

Drawing and Filling
20. Drawing

tkz-euclide can draw 5 types of objects: point, line or line segment, circle, arc and sector.

20.1. Draw a point or some points

There are two possibilities: \texttt{\tkzDrawPoint} for a single point or \texttt{\tkzDrawPoints} for one or more points.

20.1.1. Drawing points \texttt{\tkzDrawPoint}

The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling.

<table>
<thead>
<tr>
<th>arguments</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of point</td>
<td>no default</td>
<td>Only one point name is accepted</td>
</tr>
</tbody>
</table>

The point style is defined like this:

\begin{tikzpicture}
\tkzDefPoint(1,3){A}
\tkzDefPoint(4,1){B}
\tkzDefPoint(0,0){O}
\tkzDrawPoint[\textcolor{red}]{A}
\tkzDrawPoint[\textcolor{blue!20},\text{draw=blue}]{B}
\tkzDrawPoint[\textcolor{teal},\text{shape=cross},\text{size=8pt}]{O}
\end{tikzpicture}

By default, point style is defined like this:

\begin{verbatim}
\tikzset{point style/.style = {
 draw = black,
 inner sep = 0pt,
 shape = circle,
 minimum size = 3 pt,
 fill = black
}}
\end{verbatim}

20.1.2. Example of point drawings

Note that scale does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file.

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(1,3){A}
\tkzDefPoint(4,1){B}
\tkzDefPoint(0,0){O}
\tkzDrawPoint[color=red]{A}
\tkzDrawPoint[\textcolor{blue!20},\text{draw=blue}]{B}
\tkzDrawPoint[\textcolor{teal},\text{shape=cross},\text{size=8pt},\text{color=teal}]{O}
\end{tikzpicture}
\end{verbatim}

It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points.
\begin{tikzpicture}
\tkzDefPoints{1/3/A,4/1/B,0/0/C}
\tkzDrawPoints[size=3,color=red,fill=red!50](A,B,C)
\end{tikzpicture}

20.1.3. Example

\begin{itemize}
\item \begin{tikzpicture}
\tkzDefPoints{1/3/A,4/1/B,0/0/C}
\tkzDrawPoints[size=3,color=red,fill=red!50](A,B,C)
\end{tikzpicture}
\end{itemize}

21. Drawing the lines

The following macros are simply used to draw, name lines.

21.1. Draw a straight line

To draw a normal straight line, just give a couple of points. You can use the add option to extend the line (This option is due to Mark Wibrow, see the code below).

The style of a line is by default:

\begin{verbatim}
\tikzset{line style/.style = {
 line width = .6pt,
 color = black,
 style = solid,
 add = {.2} and {.2} \%
}}
\end{verbatim}

with

\begin{verbatim}
\tikzset{
 add/.style args={#1 and #2}{
 to path=\%
 ($\langle\ttkztostart\rangle$)!#1!(\ttkztotarget)$)--($\langle\ttkztotarget\rangle$)!#2!(\ttkztostart)$\%
 \ttkztonodes}}
\end{verbatim}

You can modify this style with \texttt{tkzSetUpLine} see \ref{38.1}
22. Drawing a segment

\begin{tikzpicture}
\tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25]
\tkzClip[space=.25]
\tkzDefPoint(0,0){A} \tkzDefPoint(2,0.5){B}
\tkzDefPoint(0,-1){C}\tkzDefPoint(2,-0.5){D}
\tkzDefPoint(0,1){E} \tkzDefPoint(2,1.5){F}
\tkzDefPoint(0,-2){G} \tkzDefPoint(2,-1.5){H}
\tkzDrawLine(A,B) \tkzDrawLine[add = 0 and .5](C,D)
\tkzDrawLine[add = 1 and 0](E,F)
\tkzDrawLine[add = 0 and 0](G,H)
\tkzDrawPoints(A,B,C,D,E,F,G,H)
\tkzLabelPoints(A,B,C,D,E,F,G,H)
\end{tikzpicture}

It is possible to draw several lines, but with the same options.

21.1.2. Example with \texttt{\tkzDrawLines}

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,0){B}
\tkzDefPoint(1,2){C}
\tkzDefPoint(3,2){D}
\tkzDrawLines(A,B C,D A,C B,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

22. Drawing a segment

There is, of course, a macro to simply draw a segment.

22.1. Draw a segment \texttt{\tkzDrawSegment}
22. Drawing a segment

\tkzDrawSegment[(local options)]((pt1,pt2))

The arguments are a list of two points. The styles of Ti\kZ{} are available for the drawings.

<table>
<thead>
<tr>
<th>argument</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td>draw the segment [A,B]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TikZ options</td>
<td>all TikZ options are valid.</td>
<td></td>
</tr>
<tr>
<td>dim</td>
<td>no default</td>
<td>dim = {label,dim,option}, ...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>allows you to add dimensions to a figure.</td>
</tr>
</tbody>
</table>

This is of course equivalent to \texttt{\draw (A)--(B);}. You can also use the option \texttt{add}.

22.1.1. Example with point references

\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,1){B}
\tkzDrawSegment[color=red,thin](A,B)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}

22.1.2. Example of extending an segment with option add

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[euler](A,B,C)
\tkzGetPoint{E}
\tkzDefCircle[euler](A,B,C)\tkzGetPoints{E}{e}
\tkzDrawCircle[red](E,e)
\tkzDrawLines[add=.5 and .5](A,B A,C B,C)
\tkzDrawPoints(A,B,C,E)
\tkzLabelPoints(A,B,C,E)
\end{tikzpicture}

22.1.3. Adding dimensions with option dim new code from Muzimuzhi Z

This code comes from an answer to this question on tex.stackexchange.com (change-color-and-style-of-dimension-lines-in-tkz-euclide). The code of \texttt{dim} is based on options of Ti\kZ{}, you must add the units. You can use now two styles: \texttt{dim style} and \texttt{dim fence style}. You have several ways to use them. I’ll let you look at the examples to see what you can do with these styles.
\textbf{22. Drawing a segment}

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{0/3/A, 1/-3/B}
 \tkzDrawPoints(A,B)
 \tkzDrawSegment[dim={\(l_0\),1cm,right=2mm},
 dim style/.append style={red,
 dash pattern={on 2pt off 2pt}}](A,B)
 \tkzDrawSegment[dim={\(l_1\),2cm,right=2mm},
 dim style/.append style={blue}](A,B)
 \begin{scope}[dim style/.append style={orange},
 dim fence style/.style={dashed}]
 \tkzDrawSegment[dim={\(l_2\),3cm,right=2mm}](A,B)
 \tkzDrawSegment[dim={\(l_3\),-2cm,right=2mm}](A,B)
 \end{scope}
 \tkzLabelPoints[left](A,B)
\end{tikzpicture}

\textbf{22.1.4. Adding dimensions with option \texttt{dim partI}}

\begin{tikzpicture}[scale=2]
 \pgfkeys{/pgf/number format/.cd,fixed,precision=2}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3.07,0){B}
 \tkzInterCC[R](A,2.37)(B,1.82)
 \tkzGetPoints{C}{C'}
 \tkzDefCircle[in](A,B,C) \tkzGetPoints{G}{g}
 \tkzDrawCircle(G,g)
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C)
 \tkzCalcLength(A,B) \tkzGetLength{ABl}
 \tkzCalcLength(B,C) \tkzGetLength{BCl}
 \tkzCalcLength(A,C) \tkzGetLength{ACl}
 \begin{scope}[dim style/.style={dashed,sloped,teal}]
 \tkzDrawSegment[dim={\pgfmathprintnumber\BCl,6pt,\text=red}](C,B)
 \tkzDrawSegment[dim={\pgfmathprintnumber\ACl,6pt,}](A,C)
 \tkzDrawSegment[dim={\pgfmathprintnumber\ABl,-6pt,}](A,B)
 \end{scope}
 \tkzLabelPoints(A,B) \tkzLabelPoints[above](C)
\end{tikzpicture}
22. Drawing a segment

22.1.5. Adding dimensions with option dim part II

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,-2/0/A,2/0/B,-2/4/C,2/4/D,2/-4/E,-2/-4/F}
\tkzDrawPolygon(C,...,F)
\tkzDrawSegments(A,B)
\tkzDrawPoints(A,...,F,O)
\tkzLabelPoints[below left](A,...,F,O)
\tkzDrawSegment[dim={ \sqrt{5},2cm,}](C,E)
\tkzDrawSegment[dim={ \frac{\sqrt{5}}{2},1cm,}](O,E)
\tkzDrawSegment[dim={ 2,2cm,left=8pt}](F,C)
\tkzDrawSegment[dim={ 1,1cm,left=8pt}](F,A)
\end{tikzpicture}

22.2. Drawing segments \texttt{\tkzDrawSegments}

If the options are the same we can plot several segments with the same macro.

\begin{tikzpicture}
\tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2]
\tkzClip[space=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(2,1){B}
\tkzDefPoint(3,0){C}
\tkzDrawSegments(A,B B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)
\end{tikzpicture}

22.2.1. Place an arrow on segment

\begin{tikzpicture}
\tkzSetUpStyle[postaction=decorate,
decoration={markings, mark=at position .5 with \{\arrow[thick][#1]}}](myarrow)
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,-4){B}
\tkzDrawSegments[myarrow=stealth](A,B)
\tkzDrawPoints(A,B)
\end{tikzpicture}
22.3. Drawing line segment of a triangle

22.3.1. How to draw Altitude

```latex
\begin{tikzpicture}[rotate=-90]
\tkzDefPoint(0,1){A}
\tkzDefPoint(2,4){C}
\tkzDefPointWith[orthogonal normed,K=7](C,A)
\tkzGetPoint{B}
\tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
\tkzDrawLine[dashed,color=magenta](C,Hc)
\tkzDrawSegment[green!60!black](A,C)
\tkzDrawSegment[green!60!black](C,B)
\tkzDrawSegment[green!60!black](B,A)
\tkzLabelPoint[left](A){$A$}
\tkzLabelPoint[right](B){$B$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[left](Hc){$Hc$}
\tkzLabelSegment[auto](B,A){$c$}
\tkzLabelSegment[auto,swap](B,C){$a$}
\tkzLabelSegment[auto,swap](C,A){$b$}
\tkzMarkAngle[size=1,color=cyan,mark=\](C,B,A)
\tkzMarkAngle[size=1,color=cyan,mark=\](A,C,Hc)
\tkzMarkAngle[size=0.75,color=orange,mark=\](Hc,C,B)
\tkzMarkAngle[size=0.75,color=orange,mark=\](B,A,C)
\tkzMarkRightAngle(A,C,B)
\tkzMarkRightAngle(B,Hc,C)
\end{tikzpicture}
```

22.4. Drawing a polygon

\texttt{\tkzDrawPolygon}\begin{tikzpicture} \[rotate=18,scale=1\]
\tkzDefPoints{0/0/A,2.25/0.2/B,2.5/2.75/C,-0.75/2/D}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments[style=dashed](A,C B,D)
\end{tikzpicture}

\begin{tabular}{|l|l|l|}
\hline
arguments & example & explanation \\
\hline
\texttt{(pt1,pt2,pt3,...)} & \texttt{\tkzDrawPolygon[gray,dashed](A,B,C)} & Drawing a triangle \\
\hline
options & default & example \\
\hline
\texttt{Options TikZ} & \texttt{...} & \texttt{\tkzDrawPolygon[red,line width=2pt](A,B,C)} \\
\hline
\end{tabular}

22.4.1. \texttt{\tkzDrawPolygon}

\begin{tikzpicture} \[rotate=18, scale=1\]
\tkzDefPoints{0/0/A,2.25/0.2/B,2.5/2.75/C,-0.75/2/D}
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments[style=dashed](A,C B,D)
\end{tikzpicture}
22.4.2. Option two angles

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(6,0){B}
 \tkzDefTriangle[two angles = 50 and 70](A,B) \tkzGetPoint{C}
 \tkzDrawPolygon(A,B,C)
 \tkzLabelAngle[pos=1.4](B,A,C){50°}
 \tkzLabelAngle[pos=0.8](C,B,A){70°}
\end{tikzpicture}

22.4.3. Style of line

\begin{tikzpicture}[scale=.6]
 \tkzSetUpLine[line width=5mm,color=teal]
 \tkzDefPoint(0,0){O}
 \foreach \i in {0,...,5}{
 \tkzDefPoint({30+60*\i}:4){p\i}
 }
 \tkzDefMidPoint(p1,p3) \tkzGetPoint{m1}
 \tkzDefMidPoint(p3,p5) \tkzGetPoint{m3}
 \tkzDefMidPoint(p5,p1) \tkzGetPoint{m5}
 \tkzDrawPolygon[line join=round](p1,p3,p5)
 \tkzDrawPolygon[teal!80, line join=round](p0,p2,p4)
 \tkzDrawSegments(m1,p3 m3,p5 m5,p1)
 \tkzDefCircle[R](O,4.8) \tkzGetPoint{o}
 \tkzDrawCircle[teal](O,o)
\end{tikzpicture}

22.5. Drawing a polygonal chain

\begin{verbatim}
tkzDrawPolySeg[(local options)]((points list))
\end{verbatim}

Just give a list of points and the macro plots the polygonal chain using the TikZ options present.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((pt1,pt2,pt3,....))</td>
<td>\tkzDrawPolySeggray,dashed</td>
<td>Drawing a triangle</td>
</tr>
<tr>
<td>Options TikZ</td>
<td>default</td>
<td>example</td>
</tr>
<tr>
<td>Options TikZ ...</td>
<td>\tkzDrawPolySegred,\texttt{line width}=2\texttt{pt}</td>
<td></td>
</tr>
</tbody>
</table>

\texttt{tkz-euclide} AlterMundus
22.5.1. Polygonal chain

\begin{tikzpicture}
\tkzDefPoints{0/0/A,6/0/B,3/4/C,2/2/D}
\tkzDrawPolySeg(A,...,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}

22.5.2. The idea is to inscribe two squares in a semi-circle.

A Sangaku look! It is a question of proving that one can inscribe in a half-disc, two squares, and to determine the length of their respective sides according to the radius.

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,8/0/B,4/0/I}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzInterLC(I,C)(I,B) \tkzGetPoints{E'}{E}
\tkzInterLC(I,D)(I,B) \tkzGetPoints{F'}{F}
\tkzDefPointsBy[projection=onto A--B](E,F){H,G}
\tkzDefPointsBy[symmetry = center H](I){J}
\tkzDefSquare(H,J) \tkzGetPoints{K}{L}
\tkzDrawSector(I,B)(A)
\tkzDrawPolySeg(H,E,F,G)
\tkzDrawPolySeg(J,K,L)
\tkzDrawPoints(E,G,H,F,J,K,L)
\end{tikzpicture}

22.5.3. Polygonal chain: index notation

\begin{tikzpicture}
\foreach \pt in {1,2,...,8} {%
\tkzDefPoint(\pt*20:3){P_\pt}}
\tkzDrawPolySeg(P_1,P_...,P_8)
\tkzDrawPoints(P_1,P_...,P_8)
\end{tikzpicture}

23. Draw a circle with \tkzDrawCircle

23.1. Draw one circle

\tkzDrawCircle[(local options)]{(A,B)}

\begin{tabular}{|c|c|c|}
\hline
arguments & example & explanation \\
\hline
((pt1,pt2)) & ((A,B)) & A center through B \\
\hline
\end{tabular}

Of course, you have to add all the styles of Ti\textit{k}Z for the tracings...
23.1.1. Circles and styles, draw a circle and color the disc

We'll see that it's possible to colour in a disc while tracing the circle.

\begin{tikzpicture}
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,0){A}
% circle with center O and passing through A
\tkzDrawCircle(O,A)
% diameter circle $[OA]$\tkzDefCircle[diameter](O,A) \tkzGetPoint{I}
% new circle with center I% \tkzDrawCircle[new,fill=orange!10,opacity=.5](I,A)
% circle with center O and radius = exp(1) cm\edef\rayon{\fpeval{0.25*exp(1)}}
\tkzDefCircle[R](O,\rayon) \tkzGetPoint{o}
\tkzDrawCircle[color=orange](O,o)
\end{tikzpicture}

23.2. Drawing circles

\tkzDrawCircles[⟨local options⟩](⟨A,B C,D ...⟩)

\begin{table}[ht]
\begin{tabular}{lll}
\hline
arguments & example & explanation \\
\hline
(⟨pt1,pt2 pt3,pt4 ...⟩) & (⟨A,B C,D⟩) & List of two points \\
\hline
\end{tabular}
\end{table}

\begin{table}[ht]
\begin{tabular}{lll}
\hline
options & default & definition \\
\hline
through & through & circle with two points defining a radius \\
\hline
\end{tabular}
\end{table}

Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option R is available to give a measure directly.

You do not need to use the default option through. Of course, you have to add all the styles of Ti\kZ for the tracings...
23. Draw a circle with \texttt{\tkzDrawCircle}

23.2.1. Circles defined by a triangle.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,2/0/B,3/2/C}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(A,B B,C C,A)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}

23.2.2. Concentric circles.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,1/0/a,2/0/b,3/0/c}
\tkzDrawCircles(A,a A,b A,c)
\tkzDrawPoint(A)
\tkzLabelPoints(A)
\end{tikzpicture}
23.2.3. Exscribed circles.

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/A,4/0/B,1/2.5/C}
\tkzDrawPolygon(A,B,C)
\tkzDefCircle[ex](B,C,A)
\tkzGetPoint{J_c} \tkzGetSecondPoint{T_c}
\tkzDrawCircle(J_c,T_c)
\tkzDrawLines[add=0 and 1](C,A C,B)
\tkzDrawSegment(J_c,T_c)
\tkzMarkRightAngle(J_c,T_c,B)
\tkzDrawPoints(A,B,C,J_c,T_c)
\end{tikzpicture}

23.2.4. Cardioid

Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. Its name comes from the Greek *kardia* (heart), in reference to its shape, and was given to it by Johan Castillon (Wikipedia).

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,0){A}
\foreach \ang in {5,10,...,360}{{%
\tkzDefPoint(\ang:2){M}
\tkzDrawCircle(M,A)
}
\end{tikzpicture}
23. Draw a circle with \texttt{tkzDrawCircle}

23.3. Drawing semicircle

\begin{verbatim}
\tkzDrawSemiCircle[(local options)]((O,A))
\end{verbatim}

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨pt1,pt2⟩</td>
<td>⟨(O,A)⟩</td>
<td>OA= radius</td>
</tr>
</tbody>
</table>

O center A extremity of the semicircle

23.3.1. Use of \texttt{tkzDrawSemiCircle}

```
\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(6,0){B}
\tkzDefMidPoint(A,B) \tkzGetPoint{O}
\tkzDrawSemiCircle[blue](O,B)
\tkzDrawSemiCircle[red](O,A)
\tkzDrawPoints(O,A,B)
\tkzLabelPoints[below right](O,A,B)
\end{tikzpicture}
```

23.4. Drawing semicircles

\begin{verbatim}
\tkzDrawSemicircles[(local options)]((A,B,C,D ...))
\end{verbatim}

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨pt1,pt2 pt3,pt4 ...⟩</td>
<td>⟨(A,B,C,D)⟩</td>
<td>List of two points</td>
</tr>
</tbody>
</table>
23.4.1. Use of \tkzDrawSemiCircles : Golden arbelos

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,10/0/B}
\tkzDefGoldenRatio(A,B) \tkzGetPoint{C}
\tkzDefMidPoint(A,B) \tkzGetPoint{O_0}
\tkzDefMidPoint(A,C) \tkzGetPoint{O_1}
\tkzDefMidPoint(C,B) \tkzGetPoint{O_2}
\tkzLabelPoints(A,B,C)
\tkzDrawSegment(A,B)
\tkzDrawPoints(A,B,C)
\begin{scope}[local bounding box = graph]
\tkzDrawSemiCircles[color=black](O_0,B)
\end{scope}
\useasboundingbox (graph.south west) rectangle (graph.north east);
\tkzClipCircle[out](O_1,C)\tkzClipCircle[out](O_2,B)
\tkzDrawSemiCircles[draw=none,fill=teal!15](O_0,B)
\tkzDrawSemiCircles[color=black](O_1,C O_2,B)
\end{tikzpicture}

24. Drawing arcs

24.1. Macro: \tkzDrawArc

\begin{verbatim}
\tkzDrawArc[\texttt{\{local options\}}][\{O,\ldots\}]{\{\ldots\}}
\end{verbatim}

This macro traces the arc of center O. Depending on the options, the arguments differ. It is a question of determining a starting point and an end point. Either the starting point is given, which is the simplest, or the radius of the arc is given. In the latter case, it is necessary to have two angles. Either the angles can be given directly, or nodes associated with the center can be given to determine them. The angles are in degrees.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>towards</td>
<td>O is the center and the arc from A to (OB)</td>
</tr>
<tr>
<td>rotate</td>
<td>towards</td>
<td>the arc starts from A and the angle determines its length</td>
</tr>
<tr>
<td>R</td>
<td>towards</td>
<td>we give the radius and two angles</td>
</tr>
<tr>
<td>R with nodes</td>
<td>towards</td>
<td>we give the radius and two points</td>
</tr>
<tr>
<td>angles</td>
<td>towards</td>
<td>we give the radius and two points</td>
</tr>
<tr>
<td>delta</td>
<td>\emptyset</td>
<td>angle added on each side</td>
</tr>
<tr>
<td>reverse</td>
<td>false</td>
<td>inversion of the arc’s path, interesting to inverse arrow</td>
</tr>
</tbody>
</table>

Of course, you have to add all the styles of TikZ for the tracings...

<table>
<thead>
<tr>
<th>options</th>
<th>arguments</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>(pt,pt)</td>
<td>\tkzDrawArc[${\text{delta}=10}$]O,A,B</td>
</tr>
<tr>
<td>rotate</td>
<td>(pt,pt)</td>
<td>\tkzDrawArc[${\text{rotate, color=red}}$]$O,A,90$</td>
</tr>
<tr>
<td>R</td>
<td>(pt,r)</td>
<td>\tkzDrawArc[R]$O,2,30,90$</td>
</tr>
<tr>
<td>R with nodes</td>
<td>(pt,pt)</td>
<td>\tkzDrawArc[R with nodes]$O,2,A,B$</td>
</tr>
<tr>
<td>angles</td>
<td>(pt,pt)</td>
<td>\tkzDrawArc[${\text{angles}}$]$O,A,0,90$</td>
</tr>
</tbody>
</table>

Here are a few examples:

24.1.1. Option \texttt{towards}

It's useless to put \texttt{towards}. In this first example the arc starts from A and goes to B. The arc going from B to A is different. The salient is obtained by going in the direct direction of the trigonometric circle.
24. Drawing arcs

24.1.2. Option towards

In this one, the arc starts from A but stops on the right (OB).

\begin{tikzpicture} [scale=0.75]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,-1){A}
 \tkzDefPointBy[rotation= center O angle 90](A)
 \tkzGetPoint{B}
 \tkzDrawArc[color=orange,<->](O,A)(B)
 \tkzDrawArc(O,B)(A)
 \tkzDrawLines[add = 0 and .5](O,A O,B)
 \tkzDrawPoints(O,A,B)
 \tkzLabelPoints[below](O,A,B)
\end{tikzpicture}

24.1.3. Option rotate

\begin{tikzpicture} [scale=0.75]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,-2){A}
 \tkzDefPoint(60:2){B}
 \tkzDrawLines[add = 0 and .5](O,A O,B)
 \tkzDrawArc[rotate,color=red](O,A)(180)
 \tkzDrawPoints(O,A,B)
 \tkzLabelPoints[below](O,A,B)
\end{tikzpicture}

24.1.4. Option R

\begin{tikzpicture} [scale=0.75]
 \tkzDefPoints{0/0/O}
 \tkzSetUpCompass[<->]
 \tkzDrawArc[R,color=teal,double](O,3)(270,360)
 \tkzDrawArc[R,color=orange,double](O,2)(0,270)
 \tkzDrawPoint(O)
 \tkzLabelPoint[below](O){O}
\end{tikzpicture}
24. Drawing arcs

24.1.5. Option \textbf{R} with nodes

\begin{tikzpicture}[scale=0.75]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,-1){A}
\tkzDefPoint(1,1){B}
\tkzCalcLength(B,A)\tkzGetLength{radius}
\tkzDrawArc[R with nodes](B,\radius)(A,O)
\end{tikzpicture}

24.1.6. Option \textbf{delta}

This option allows a bit like \texttt{\texttt{tkzCompass}} to place an arc and overflow on either side. delta is a measure in degrees.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPointBy[rotation=center A angle 60](B)
\tkzGetPoint{C}
\begin{scope}% style only local
\tkzDefPointBy[symmetry=center C](A)
\tkzGetPoint{D}
\tkzDrawSegments(A,B A,D)
\tkzDrawLine(B,D)
\tkzSetUpCompass[color=orange]
\tkzDrawArc[orange,delta=10](A,B)(C)
\tkzDrawArc[orange,delta=10](B,C)(A)
\tkzDrawArc[orange,delta=10](C,D)(D)
\end{scope}
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints[below right](A,B,C,D)
\tkzMarkRightAngle(D,B,A)
\end{tikzpicture}

24.1.7. Option angles: example 1

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzDefPoint(2.5,0){O}
\tkzDefPointBy[rotation=center O angle 60](B)
\tkzGetPoint{D}
\tkzDefPointBy[symmetry=center D](O)
\tkzGetPoint{E}
\begin{scope}
\tkzDrawArc[angles](O,B)(0,180)
\tkzDrawArc[angles,](B,O)(100,180)
\tkzCompass[delta=20](D,E)
\tkzDrawLines(A,B O,E B,E)
\tkzDrawPoints(A,B,O,D,E)
\end{scope}
\tkzLabelPoints[below right](A,B,O,D,E)
\tkzMarkRightAngle(O,B,E)
\end{tikzpicture}
24.1.8. Option angles: example 2

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(5,0){I}
 \tkzDefPoint(0,5){J}
 \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C}
 \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A}
 \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K}
 \tkzDrawArc[angles](O,I)(0,90)
 \tkzDrawArc[angles,\textcolor{gray},\textstyle=dashed](I,O)(90,180)
 \tkzDrawArc[angles,\textcolor{gray},\textstyle=dashed](J,O)(-90,0)
 \tkzDrawPoints(A,B,K)
 \foreach \point in {I,A,B,J,K}{\tkzDrawSegment(O,\point)}
\end{tikzpicture}

24.1.9. Option reverse: inversion of the arrow

\begin{tikzpicture}
 \tkzDefPoints{0/0/O,3/0/U}
 \tkzDefPoint(10:1){A}
 \tkzDefPoint(90:1){B}
 \tkzLabelPoints(A,B)
 \tkzDrawArc[\textcolor{gray},\textstyle=dashed](O,A)(B)
 \tkzDrawPoints(A,B,O)
\end{tikzpicture}

25. Drawing a sector or sectors

25.1. \texttt{tkzDrawSector}

Attention the arguments vary according to the options.

\begin{tabular}{|c|c|l|}
\hline
\textbf{options} & \textbf{default} & \textbf{definition} \\
\hline
\texttt{towards} & \texttt{towards} & \texttt{O} is the center and the arc from \texttt{A} to \texttt{(OB)} \\
\texttt{rotate} & \texttt{towards} & \texttt{the arc starts from \texttt{A} and the angle determines its length} \\
\texttt{R} & \texttt{towards} & \texttt{We give the radius and two angles} \\
\texttt{R with nodes} & \texttt{towards} & \texttt{We give the radius and two points} \\
\hline
\end{tabular}

You have to add, of course, all the styles of \texttt{TikZ} for tracings...

<table>
<thead>
<tr>
<th>options</th>
<th>arguments</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{towards}</td>
<td>(pt,pt)(pt)</td>
<td>\texttt{tkzDrawSector(0,A)(B)}</td>
</tr>
<tr>
<td>\texttt{rotate}</td>
<td>(pt,pt)(an)</td>
<td>\texttt{tkzDrawSectorrotate,color=red(90)}</td>
</tr>
<tr>
<td>\texttt{R}</td>
<td>(pt,r)(an,an)</td>
<td>\texttt{tkzDrawSectorR,color=teal(30,90)}</td>
</tr>
<tr>
<td>\texttt{R with nodes}</td>
<td>(pt,r)(pt,pt)</td>
<td>\texttt{tkzDrawSectorR with nodes(A,B)}</td>
</tr>
</tbody>
</table>

Here are a few examples:
25. Drawing a sector or sectors

25.1.1. \texttt{tkzDrawSector} and \texttt{towards}

There’s no need to put \texttt{towards}. You can use \texttt{fill} as an option.

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(-30:1){A}
 \tkzDefPointBy[rotation = center O angle -60](A)
 \tkzDrawSector[teal](O,A)(tkzPointResult)
 \begin{scope}[shift={(-60:1)}]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(-30:1){A}
 \tkzDefPointBy[rotation = center O angle -60](A)
 \tkzDrawSector[red](O,tkzPointResult)(A)
 \end{scope}
\end{tikzpicture}

\begin{verbatim}
\begin{tikzpicture}
 \tkzDefPoints{0/0/O,2/2/A,2/1/B}
 \tkzDrawSector[rotate,orange](O,A)(20)
 \tkzDrawSector[rotate,teal](O,B)(-20)
\end{tikzpicture}
\end{verbatim}

25.1.3. \texttt{tkzDrawSector} and \texttt{R}

\begin{verbatim}
\begin{tikzpicture}[scale=1.25]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,-1){A}
 \tkzDrawSector[R](O,1)(30,90)
 \tkzDrawSector[R](O,1)(90,180)
 \tkzDrawSector[R](O,1)(180,270)
 \tkzDrawSector[R](O,1)(270,360)
\end{tikzpicture}
\end{verbatim}

25.1.4. \texttt{tkzDrawSector} and \texttt{R} with nodes

In this example I use the option \texttt{fill} but \texttt{tkzFillSector} is possible.
25.1.5. `\tkzDrawSector` and `R with nodes`

\begin{tikzpicture} [scale=.4]
\tkzDefPoints{-1/-2/A,1/3/B}
\tkzDefRegPolygon[side,sides=6](A,B)
\tkzGetPoint{O}
\tkzDrawPolygon[fill=black!10, draw=blue](P1,P...,P6)
\tkzLabelRegPolygon[sep=1.05](O){A,...,F}
\tkzDrawCircle[dashed](O,A)
\tkzLabelSegment[above,sloped,midway](A,B){\(AB = 16m\)}
\foreach \i [count=\xi from 1] in {2,...,6,1} {
\tkzDefMidPoint(P\xi,P\i)
\path (O) to [pos=1.1] node {\xi} (tkzPointResult) ;
}
\tkzDefRandPointOn[segment = P3--P5](S)
\tkzDrawSegments[thick,dashed,red](A,S S,B)
\tkzDrawPoints(P1,P...,P6,S)
\tkzLabelPoint[above](S){\$S\$}
\tkzDrawSector[R with nodes,fill=red!20](S,2)(A,B)
\tkzLabelAngle[above](A,S,B){\(\alpha\)}
\end{tikzpicture}

25.2. Coloring a disc

This was possible with the macro `\tkzDrawCircle`, but disk tracing was mandatory, this is no longer the case.

\begin{verbatim}
\tkzFillCircle[\texttt{local options}](\texttt{(A,B)})
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius</td>
<td>two points define a radius</td>
</tr>
<tr>
<td>R radius</td>
<td>a point and the measurement of a radius</td>
</tr>
</tbody>
</table>

You don't need to put `radius` because that's the default option. Of course, you have to add all the styles of Ti\k Z for the plots.
25. Drawing a sector or sectors

25.2.1. Yin and Yang

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){O}
\tkzDefPoint(-4,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(-2,0){I}
\tkzDefPoint(2,0){J}
\tkzDrawSector[fill=teal](O,A)(B)
\tkzFillCircle[fill=white](J,B)
\tkzFillCircle[fill=teal](I,A)
\tkzDrawCircle(O,A)
\end{tikzpicture}

25.2.2. From a sangaku

\begin{tikzpicture}
\tkzDefPoint(0,0){B} \tkzDefPoint(6,0){C}
\tkzDefSquare(B,C) \tkzGetPoints{D}{A}
\tkzClipPolygon(B,C,D,A)
\tkzDefMidPoint(A,D) \tkzGetPoint{F}
\tkzDefMidPoint(B,C) \tkzGetPoint{E}
\tkzDefMidPoint(B,D) \tkzGetPoint{Q}
\tkzDefLine[tangent from = B](F,A) \tkzGetPoints{H}{G}
\tkzInterLL(F,G)(C,D) \tkzGetPoint{J}
\tkzInterLL(A,J)(F,E) \tkzGetPoint{K}
\tkzDefPointBy[projection=onto B--A](K)
\tkzGetPoint{M}
\tkzDrawPolygon(A,B,C,D)
\tkzFillCircle[red!20](E,B)
\tkzFillCircle[blue!20](M,A)
\tkzFillCircle[green!20](K,Q)
\tkzDrawCircles(B,A M,A E,B K,Q)
\end{tikzpicture}
25.2.3. Clipping and filling part I

\begin{tikzpicture}
\tkzDefSquare(A,B)\tkzGetPoints{C}{D}
\tkzDefPointWith[colinear normed=at X,K=1](O,X)\tkzGetPoint{F}
\begin{scope}
\tkzFillCircle[fill=teal!20](O,F)
\tkzFillPolygon[white](A,...,D)
\tkzClipPolygon(A,...,D)
\foreach \c/\t in {S/C,R/B,U/A,T/D}{\tkzFillCircle[teal!20](\c,\t)}
\end{scope}
\foreach \c/\t in {X/C,Y/B,Z/A,W/D}{\tkzFillCircle[white](\c,\t)}
\foreach \c/\t in {S/C,R/B,U/A,T/D}{\tkzFillCircle[teal!20](\c,\t)}
\end{tikzpicture}

25.2.4. Clipping and filling part II

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,8/0/B,8/8/C,0/8/D}
\tkzDefMidPoint(A,B) \tkzGetPoint{F}
\tkzDefMidPoint(B,C) \tkzGetPoint{E}
\tkzDefMidPoint(D,B) \tkzGetPoint{I}
\tkzDefMidPoint(I,B) \tkzGetPoint{a}
\tkzInterLC(B,I)(B,C) \tkzGetSecondPoint{K}
\tkzDefMidPoint(I,K) \tkzGetPoint{b}
\begin{scope}
\tkzFillSector[fill=blue!10](B,C)(A)
\tkzDefMidPoint(A,B) \tkzGetPoint{x}
\tkzDrawSemiCircle[fill=white](x,B)
\tkzDefMidPoint(B,C) \tkzGetPoint{y}
\tkzDrawSemiCircle[fill=white](y,C)
\tkzClipCircle(E,B)
\tkzClipCircle(F,B)
\tkzFillCircle[fill=blue!10](B,A)
\end{scope}
\tkzDrawSemiCircle[thick](F,B)
\tkzDrawSemiCircle[thick](E,C)
\tkzDrawArc[thick](B,C)(A)
\tkzDrawSegments[thick](A,B,B,C)
\tkzDrawPoints(A,B,C,E,F)
\tkzLabelPoints{centered}(a,b)
\tkzLabelPoints(A,B,C,E,F)
\end{tikzpicture}
25.2.5. Clipping and filling part III

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(1,0){B}
\tkzDefPoint(2,0){C} \tkzDefPoint(-3,0){a}
\tkzDefPoint(3,0){b} \tkzDefPoint(0,3){c}
\tkzDefPoint(0,-3){d}
\begin{scope}
\tkzClipPolygon(a,b,c,d)
\tkzFillCircle[teal!20](A,C)
\end{scope}
\tkzFillCircle[white](A,B)
\tkzDrawCircle[color=red](A,C)
\tkzDrawCircle[color=red](A,B)
\end{tikzpicture}

25.3. Coloring a polygon

\begin{displaymath}
\textbf{\texttt{\textbackslash tkzFillPolygon}}[\langle local \text{ options} \rangle](\langle \text{points list} \rangle)
\end{displaymath}

You can color by drawing the polygon, but in this case you color the inside of the polygon without drawing it.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$⟨\text{pt1,pt2,...}⟩$</td>
<td>$⟨A,B,..⟩$</td>
<td></td>
</tr>
</tbody>
</table>

25.3.1. \texttt{\texttt{tkzFillPolygon}}

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){C} \tkzDefPoint(4,0){A}
\tkzDefPoint(0,3){B}
\tkzDefSquare(B,A) \tkzGetPoints{E}{F}
\tkzDefSquare(A,C) \tkzGetPoints{G}{H}
\tkzDefSquare(C,B) \tkzGetPoints{I}{J}
\tkzFillPolygon[color = orange!30](A,C,G,H)
\tkzFillPolygon[color = teal!40](C,B,I,J)
\tkzFillPolygon[color = purple!20](B,A,E,F)
\tkzDrawPolygon[line width = 1pt](A,B,C)
\tkzDrawPolygon[line width = 1pt](A,C,G,H)
\tkzDrawPolygon[line width = 1pt](C,B,I,J)
\tkzDrawPolygon[line width = 1pt](B,A,E,F)
\tkzLabelSegment[above](C,A){a}
\tkzLabelSegment[right](B,C){b}
\tkzLabelSegment[below left](B,A){c}
\end{tikzpicture}

25.4. \texttt{\texttt{tkzFillSector}}

⚠️ Attention the arguments vary according to the options.
25. Drawing a sector or sectors

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2,2){A}
\tkzFillSector[rotate,color=teal!40](O,A)(30)(-30)
\end{tikzpicture}
\end{verbatim}

25.4.1. \texttt{\texttt{tkzFillSector}} and \texttt{towards}

It is useless to put \texttt{towards} and you will notice that the contours are not drawn, only the surface is colored.

\begin{verbatim}
\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,3){A}
\tkzDefPointBy[rotation = center O angle -60](A)
\tkzFillSector[fill=purple!20](O,A)(tkzPointResult)
\begin{scope}[shift={(-60:1)}]
\tkzDefPoint(0,0){O}
\tkzDefPoint(3,3){A}
\tkzDefPointBy[rotation = center O angle -60](A)
\tkzGetPoint{A'}
\tkzFillSector[fill=teal!40](O,A')(A)
\end{scope}
\end{tikzpicture}
\end{verbatim}

25.4.2. \texttt{\texttt{tkzFillSector}} and \texttt{rotate}

\begin{verbatim}
\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A}
\tkzFillSector[rotate,color=purple!20](O,A)(30)
\tkzFillSector[rotate,color=teal!40](O,A)(-30)
\end{tikzpicture}
\end{verbatim}

25.5. Colour an angle: \texttt{\texttt{tkzFillAngle}}

The simplest operation
25. Drawing a sector or sectors

\[\texttt{tkzFillAngle[\textit{local options}] \langle A,O,B \rangle} \]

O is the vertex of the angle. OA and OB are the sides. Attention the angle is determined by the order of the points.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1</td>
<td>this option determines the radius of the coloured angular sector.</td>
</tr>
</tbody>
</table>

Of course, you have to add all the styles of TikZ, like the use of fill and shade...

25.5.1. Example with size

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B}
\tkzFillAngle[size=2, fill=gray!10](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

25.5.2. Changing the order of items

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B}
\tkzFillAngle[size=2, fill=gray!10](B,O,A)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

\begin{tikzpicture}
\tkzInit
\tkzDefPoints{0/0/O,5/0/A,3/4/B}
% Don't forget {} to get, () to use
\tkzFillAngle[size=4, left color=white, right color=red!50](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

\[\texttt{tkzFillAngles[\textit{local options}] \langle A,O,B \rangle \langle A',O',B' \rangle etc.} \]

With common options, there is a macro for multiple angles.
26. Controlling Bounding Box

From the \textit{Pgf\textregistered Manual}: "When you add the clip option, the current path is used for clipping subsequent drawings. Clipping never enlarges the clipping area. Thus, when you clip against a certain path and then clip again against another path, you clip against the intersection of both. The only way to enlarge the clipping path is to end the pgfscope in which the clipping was done. At the end of a pgfscope the clipping path that was in force at the beginning of the scope is reinstalled."

First of all, you don't have to deal with Ti\textregistered Z the size of the bounding box. Early versions of \texttt{tkz-euclide} did not control the size of the bounding box, now with \texttt{tkz-euclide 4} the size of the bounding box is limited.

The initial bounding box after using the macro \texttt{\tkzInit} is defined by the rectangle based on the points (0,0) and (10,10). The \texttt{\tkzInit} macro allows this initial bounding box to be modified using the arguments (\texttt{xmin}, \texttt{xmax}, \texttt{ymin}, and \texttt{ymax}). Of course any external trace modifies the bounding box. Ti\textregistered Z maintains that bounding box. It is possible to influence this behavior either directly with commands or options in Ti\textregistered Z such as a command like \texttt{use as bounding box} or the option \texttt{use as bounding box}. A possible consequence is to reserve a box for a figure but the figure may overflow the box and spread over the main text. The following command \texttt{\pgfresetboundingbox} clears a bounding box and establishes a new one.

26.1. Utility of \texttt{\tkzInit}

However, it is sometimes necessary to control the size of what will be displayed. To do this, you need to have prepared the bounding box you are going to work in, this is the role of the macro \texttt{\tkzInit}. For some drawings, it is interesting to fix the extreme values (\texttt{xmin},\texttt{xmax},\texttt{ymin} and \texttt{ymax}) and to "clip" the definition rectangle in order to control the size of the figure as well as possible.

The two macros that are useful for controlling the bounding box:

\begin{itemize}
 \item \texttt{\tkzInit}
 \item \texttt{\tkzClip}
\end{itemize}

To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the section Bounding Box).
26. Controlling Bounding Box

26.2. \texttt{tkzInit}

\begin{verbatim}
\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzDefPoints{-1/-1/A,5/2/B}
\tkzDrawX \tkzDrawY \tkzGrid \tkzClip \tkzDrawSegment(A,B)
\end{tikzpicture}
\end{verbatim}

The role of \texttt{tkzInit} is to define an orthogonal coordinates system and a rectangular part of the plane in which you will place your drawings using Cartesian coordinates. This macro allows you to define your working environment as with a calculator. With \texttt{tkz-euclide 4} \texttt{xstep} and \texttt{ystep} are always 1. Logically it is no longer useful to use \texttt{tkzInit}, except for an action like "Clipping Out".

26.3. \texttt{tkzClip}

\begin{verbatim}
\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzDefPoints{-1/-1/A,5/2/B}
\tkzDrawX \tkzDrawY \tkzGrid \tkzClip \tkzDrawSegment(A,B)
\end{tikzpicture}
\end{verbatim}

It is possible to add a bit of space

\begin{verbatim}
\tkzClip[space=1]
\end{verbatim}

26.4. \texttt{tkzClip} and the option \texttt{space}

This option allows you to add some space around the "clipped" rectangle.
The dimensions of the "clipped" rectangle are $x_{\text{min}}-1, y_{\text{min}}-1, x_{\text{max}}+1$ and $y_{\text{max}}+1$.

26.5. `\tkzShowBB`

The simplest macro.

\begin{tikzpicture}
\tkzInit[xmax=4, ymax=3]
\tkzDefPoints{-1/-1/A,5/2/B}
\tkzDrawX \tkzDrawY
\tkzGrid
\tkzClip[space=1]
\tkzDrawSegment(A,B)
\end{tikzpicture}

26.5.1. Example with `\tkzShowBB`

\begin{tikzpicture}[scale=.5]
\tkzInit[ymax=5,xmax=8]
\tkzGrid
\tkzDefPoint(3,0){A}
\begin{scope}
\tkzClipBB
\tkzDefCircle[R](A,5) \tkzGetPoint{a}
\tkzDrawCircle(A,a)
\tkzShowBB[line width = 4pt,fill=teal!10,opacity=.4]
\end{scope}
\tkzDefCircle[R](A,4) \tkzGetPoint{b}
\tkzDrawCircle[red](A,b)
\end{tikzpicture}

26.6. `\tkzClipBB`

The idea is to limit future constructions to the current bounding box.

\begin{tikzpicture}
\tkzInit[ymax=5,xmax=8]
\tkzGrid
\tkzDefPoint(3,0){A}
\tkzClipBB
\tkzDefCircle[R](A,5) \tkzGetPoint{a}
\tkzDrawCircle(A,a)
\tkzDefCircle[R](A,4) \tkzGetPoint{b}
\tkzDrawCircle[red](A,b)
\end{tikzpicture}
26.6.1. Example with \tkzClipBB and the bisectors

\begin{tikzpicture}
\tkzInit[xmin=-3,xmax=6, ymin=-1,ymax=6]
\tkzDefPoint(0,0){O}\tkzDefPoint(3,1){I}
\tkzDefPoint(1,4){J}
\tkzDefLine[bisector](I,O,J) \tkzGetPoint{i}
\tkzDefLine[bisector out](I,O,J) \tkzGetPoint{j}
\tkzDrawPoints(O,I,J,i,j)
\tkzClipBB
\tkzDrawLines[add = 1 and 2,color=orange](O,I O,J)
\tkzDrawLines[add = 1 and 2](O,i O,j)
\tkzShowBB
\end{tikzpicture}
27. Clipping different objects

27.1. Clipping a polygon

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(1,3){C}
\tkzDrawPolygon(A,B,C)
\tkzDefPoint(0,2){D}
\tkzDefPoint(2,0){E}
\tkzDrawPoints(D,E)
\tkzLabelPoints(D,E)
\tkzClipPolygon(A,B,C)
\tkzDrawLine[new](D,E)
\end{tikzpicture}

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){P1}
\tkzDefPoint(4,0){P2}
\tkzDefPoint(4,4){P3}
\tkzDefPoint(0,4){P4}
\tkzDefPoint(1,1){Q1}
\tkzDefPoint(3,1){Q2}
\tkzDefPoint(3,3){Q3}
\tkzDefPoint(1,3){Q4}
\tkzDrawPolygon(P1,P2,P3,P4)
\begin{scope}
\tkzClipPolygon[\texttt{out}](Q1,Q2,Q3,Q4)
\tkzFillPolygon[teal!20](P1,P2,P3,P4)
\end{scope}
\tkzDrawPolygon(Q1,Q2,Q3,Q4)
\end{tikzpicture}

\texttt{tkzClipPolygon}\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefPoint(1,3){C}
\tkzDrawPolygon(A,B,C)
\tkzDefPoint(0,2){D}
\tkzDefPoint(2,0){E}
\tkzClipPolygon(A,B,C)
\tkzDrawLine[new](D,E)
\end{tikzpicture}

\texttt{tkzClipPolygon[\texttt{out}]}\begin{tikzpicture}
\tkzDefPoint(0,0){P1}
\tkzDefPoint(4,0){P2}
\tkzDefPoint(4,4){P3}
\tkzDefPoint(0,4){P4}
\tkzDefPoint(1,1){Q1}
\tkzDefPoint(3,1){Q2}
\tkzDefPoint(3,3){Q3}
\tkzDefPoint(1,3){Q4}
\tkzDrawPolygon(P1,P2,P3,P4)
\begin{scope}
\tkzClipPolygon[\texttt{out}](Q1,Q2,Q3,Q4)
\tkzFillPolygon[teal!20](P1,P2,P3,P4)
\end{scope}
\tkzDrawPolygon(Q1,Q2,Q3,Q4)
\end{tikzpicture}
27. Clipping different objects

27.1.3. Example: use of "Clip" for Sangaku in a square

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDefPoint(4,8){F}
\tkzDefTriangle[equilateral](C,D)
\tkzGetPoint{I}
\tkzDefPointBy[projection=onto B--C](I)
\tkzGetPoint{J}
\tkzInterLL(D,B)(I,J) \tkzGetPoint{K}
\tkzDefPointBy[symmetry=center K](B)
\tkzGetPoint{M}
\tkzClipPolygon(B,C,D,A)
\tkzFillPolygon[color = orange](A,B,C,D)
\tkzFillCircle[color = yellow](M,I)
\tkzFillCircle[color = blue!50!black](F,D)
\end{tikzpicture}

27.2. Clipping a disc

\begin{tabular}{|c|c|c|}
\hline
arguments & example & explanation \\
\hline
\(\langle A,B \rangle\) & \(\langle A,B \rangle\) & \(AB\) radius \\
\hline
\hline
\end{tabular}

It is not necessary to put \texttt{radius} because that is the default option.

27.2.1. Simple clip

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(2,2){O}
\tkzDefPoint(4,4){B} \tkzDefPoint(5,5){C}
\tkzDrawPoints(O,A,B,C)
\tkzDrawCircle(O,A)
\tkzClipCircle(O,A)
\tkzDrawLine(A,C)
\tkzDrawCircle[fill=teal!10,opacity=.5](C,O)
\end{tikzpicture}
27.3. Clip out

\begin{tikzpicture}
\tkzInit[xmin=-3,ymin=-2,xmax=4,ymax=3]
\tkzDefPoint(0,0){O}
\tkzDefPoint(-4,-2){A}
\tkzDefPoint(3,1){B}
\tkzDefCircle[R](O,2) \tkzGetPoint{o}
\tkzDrawPoints(A,B) \% to have a good bounding box
\begin{scope}
\tkzClipCircle[\circ](O,o)
\tkzDrawLines(A,B)
\end{scope}
\end{tikzpicture}

27.4. Intersection of disks

\begin{tikzpicture}
\tkzDefPoints{0/0/O,4/0/A,0/4/B}
\tkzDrawPolygon[fill=teal](O,A,B)
\tkzClipPolygon(O,A,B)
\tkzClipCircle(A,O)
\tkzClipCircle(B,O)
\tkzFillPolygon[white](O,A,B)
\end{tikzpicture}

see a more complex example about clipping here : 45.6

27.5. Clipping a sector

\begin{verbatim}
\tkzClipSector[[local options]]((O,...)(...))
\end{verbatim}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>towards</td>
<td>O is the center and the sector starts from A to (OB)</td>
</tr>
<tr>
<td>rotate</td>
<td>towards</td>
<td>The sector starts from A and the angle determines its amplitude.</td>
</tr>
<tr>
<td>R</td>
<td>towards</td>
<td>We give the radius and two angles</td>
</tr>
</tbody>
</table>

You have to add, of course, all the styles of \Ti\kZ{} for tracings...

<table>
<thead>
<tr>
<th>options</th>
<th>arguments</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards</td>
<td>((pt,pt))((pt,pt))</td>
<td>\tkzClipSector(0,A)(B)</td>
</tr>
<tr>
<td>rotate</td>
<td>((pt,pt))((angle))</td>
<td>\tkzClipSectorrotate(90)</td>
</tr>
<tr>
<td>R</td>
<td>((pt,r))((angle,angle 2))</td>
<td>\tkzClipSectorR(30,90)</td>
</tr>
</tbody>
</table>
27. Clipping different objects

27.5.1. Example 1

\begin{tikzpicture}[scale=0.5]
 \tkzDefPoint(0,0){a}
 \tkzDefPoint(12,0){b}
 \tkzDefPoint(4,10){c}
 \tkzInterCC[R](a,6)(b,8)
 \tkzGetFirstPoint{AB1} \tkzGetSecondPoint{AB2}
 \tkzInterCC[R](a,6)(c,6)
 \tkzGetFirstPoint{AC1} \tkzGetSecondPoint{AC2}
 \tkzInterCC[R](b,8)(c,6)
 \tkzGetFirstPoint{BC1} \tkzGetSecondPoint{BC2}
 \tkzDrawArc(a,AB2)(AB1)
 \tkzDrawArc(b,AB1)(AB2)
 \tkzDrawArc(a,AC2)(AC1)
 \tkzDrawArc(c,AC1)(AC2)
 \tkzDrawArc(b,BC2)(BC1)
 \tkzDrawArc(c,BC1)(BC2)
 \begin{scope}
 \tkzClipSector(b,BC2)(BC1)
 \tkzFillSector[teal!40!white](c,BC1)(BC2)
 \end{scope}
 \begin{scope}
 \tkzClipSector(a,AB2)(AB1)
 \tkzFillSector[teal!40!white](b,AB1)(AB2)
 \end{scope}
 \begin{scope}
 \tkzClipSector(a,AC2)(AC1)
 \tkzFillSector[teal!40!white](c,AC1)(AC2)
 \end{scope}
\end{tikzpicture}

27.5.2. Example 2

\begin{tikzpicture}[scale=1.5]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,-1){A}
 \tkzDefPoint(1,1){B}
 \tkzDrawSector[new,dashed](O,A)(B)
 \tkzDrawSector[new](O,B)(A)
 \begin{scope}
 \tkzClipSector(O,B)(A)
 \tkzDefSquare(O,B) \tkzGetPoints{B'}{O'}
 \tkzDrawPolygon[color=teal,fill=teal!20](O,B,B',O')
 \end{scope}
 \tkzDrawPoints(A,B,O)
\end{tikzpicture}

27.6. Options from TikZ: trim left or right

See the \texttt{pgfmanual}

27.7. TikZ Controls \texttt{\pgfinterruptboundingbox} and \texttt{\endpgfinterruptboundingbox}

This command temporarily interrupts the calculation of the box and configures a new box. See the \texttt{pgfmanual}

\begin{tikzpicture}[scale=1.5]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2,-1){A}
 \tkzDefPoint(1,1){B}
 \tkzDrawSector[new,dashed](O,A)(B)
 \tkzDrawSector[new](O,B)(A)
 \begin{scope}
 \tkzClipSector(O,B)(A)
 \tkzDefSquare(O,B) \tkzGetPoints{B'}{O'}
 \tkzDrawPolygon[color=teal,fill=teal!20](O,B,B',O')
 \end{scope}
 \tkzDrawPoints(A,B,O)
\end{tikzpicture}
27. Clipping different objects

27.7.1. Example about controlling the bounding box

\begin{tikzpicture}
\tkzDefPoint(0,5){A}\tkzDefPoint(5,4){B}
\tkzDefPoint(0,0){C}\tkzDefPoint(5,1){D}
\tkzDrawSegments(A,B C,D A,C)
\pgfinterruptboundingbox
\tkzInterLL(A,B)(C,D)\tkzGetPoint{I}
\endpgfinterruptboundingbox
\tkzClipBB
\tkzDrawCircle(I,B)
\end{tikzpicture}

27.8. Reverse clip: \texttt{tkzreverseclip}

In order to use this option, a bounding box must be defined.

\begin{verbatim}
\tikzset{tkzreverseclip/.style=(insert path={
 (current bounding box.south west) --(current bounding box.north west)
 --(current bounding box.north east) -- (current bounding box.south east)
 -- cycle})}
\end{verbatim}

27.8.1. Example with \texttt{tkzClipPolygon[\textit{out}]}

\texttt{tkzClipPolygon[\textit{out}],tkzClipCircle[\textit{out}]} use this option.
\begin{tikzpicture}[scale=1]
\tkzInit[xmin=-5,xmax=5,ymin=-4,ymax=6]
\tkzClip
\tkzDefPoints{-0.5/0/P1,0.5/0/P2}
\foreach \i [count=\j from 3] in {2,...,7}{%
 \tkzDefShiftPoint[\pi]((45*(\i-1)):1){\pi}}
\tkzClipPolygon[out](P1,P...,P8)
\tkzCalcLength(P1,P5)\tkzGetLength{r}
\begin{scope}[blend group=screen]
 \foreach \i in {1,...,8}{%
 \tkzDefCircle[R](\pi,\r) \tkzGetPoint{x}
 \tkzFillCircle[color=teal](\pi,x)}
\end{scope}
\end{tikzpicture}
Part V.

Marking
27.9. Mark a segment \texttt{\tkzMarkSegment}

\begin{verbatim}
\tkzMarkSegment[(local options)]((pt1,pt2))
\end{verbatim}

The macro allows you to place a mark on a segment.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>.5</td>
<td>position of the mark</td>
</tr>
<tr>
<td>color</td>
<td>black</td>
<td>color of the mark</td>
</tr>
<tr>
<td>mark</td>
<td>none</td>
<td>choice of the mark</td>
</tr>
<tr>
<td>size</td>
<td>4pt</td>
<td>size of the mark</td>
</tr>
</tbody>
</table>

Possible marks are those provided by TikZ, but other marks have been created based on an idea by Yves Combe.

27.9.1. Several marks

\begin{tikzpicture}
\tkzDefPoint(2,1){A}
\tkzDefPoint(6,4){B}
\tkzDrawSegment(A,B)
\tkzMarkSegment[color=brown,size=2pt,pos=0.4,mark=z](A,B)
\tkzMarkSegment[color=blue,pos=0.2,mark=oo](A,B)
\tkzMarkSegment[pos=0.8,mark=s,color=red](A,B)
\end{tikzpicture}

27.9.2. Use of mark

\begin{tikzpicture}
\tkzDefPoint(2,1){A}
\tkzDefPoint(6,4){B}
\tkzDrawSegment(A,B)
\tkzMarkSegment[color=gray,pos=0.2,mark=s|](A,B)
\tkzMarkSegment[color=gray,pos=0.4,mark=s||](A,B)
\tkzMarkSegment[color=gray,pos=0.6,mark=||](A,B)
\tkzMarkSegment[color=gray,pos=0.8,mark=|||](A,B)
\end{tikzpicture}

27.10. Marking segments \texttt{\tkzMarkSegments}

\begin{verbatim}
\tkzMarkSegments[(local options)]((pt1,pt2 pt3,pt4 ...))
\end{verbatim}

Arguments are a list of pairs of points separated by spaces. The styles of TikZ are available for plots.

27.10.1. Marks for an isosceles triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C}
\tkzDrawSegments(O,A A,B)
\tkzDrawLine(O,B)
\tkzMarkSegments[mark=||,size=6pt](O,A,A,B)
\end{tikzpicture}
27.11. Another marking

\begin{tikzpicture}[scale=1]
 \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B}\tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P}
 \tkzDrawPolygon(A,B,C)\tkzDefEquilateral(A,P) \tkzGetPoint{P'}
 \tkzDefPointsBy[rotation=center A angle 60](P,B){P',C'} \tkzDrawPolygon(A,P,P')
 \tkzDrawPolySeg(P',C',A,P,B) \tkzDrawSegment(C,P) \tkzDrawPoints(A,B,C,C',P,P')
 \tkzMarkSegments[mark=s|,size=6pt, color=blue](A,P P,P' P',A) \tkzMarkSegments[mark=||,color=orange](B,P P',C')
 \tkzLabelPoints(A,C) \tkzLabelPoints[below](P) \tkzLabelPoints[above right](P',C',B)
\end{tikzpicture}

27.12. Mark an arc \texttt{tkzMarkArc}

\begin{Verbatim}
\texttt{tkzMarkArc[,local options][,(pt1,pt2,pt3)]}
\end{Verbatim}

The macro allows you to place a mark on an arc. pt1 is the center, pt2 and pt3 are the endpoints of the arc.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>.5</td>
<td>position of the mark</td>
</tr>
<tr>
<td>color</td>
<td>black</td>
<td>color of the mark</td>
</tr>
<tr>
<td>mark</td>
<td>none</td>
<td>choice of the mark</td>
</tr>
<tr>
<td>size</td>
<td>4pt</td>
<td>size of the mark</td>
</tr>
</tbody>
</table>

Possible marks are those provided by TikZ, but other marks have been created based on an idea by Yves Combe.

\begin{Verbatim}
|, ||, |||, z, s, x, o, oo
\end{Verbatim}

27.12.1. Several marks

\begin{Verbatim}
\begin{tikzpicture}
 \tkzDefPoint(0,0){O}\pgfmathsetmacro\r{2}\tkzDefPoint(30:2\r){A}\tkzDefPoint(85:2\r){B}
 \tkzDrawCircle(O,A) \tkzMarkArc[color=red,mark=||](O,A,B) \tkzDrawPoints(B,A,0)
\end{tikzpicture}
\end{Verbatim}

27.13. Mark an angle mark : \texttt{tkzMarkAngle}

More delicate operation because there are many options. The symbols used for marking in addition to those of TikZ are defined in the file \texttt{tkz-lib-marks.tex} and designated by the following characters:
O is the vertex. Attention the arguments vary according to the options. Several markings are possible. You can simply draw an arc or add a mark on this arc. The style of the arc is chosen with the option `arc`, the radius of the arc is given by `mksize`, the arc can, of course, be colored.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc</td>
<td>1</td>
<td>choice of l, ll and lll (single, double or triple).</td>
</tr>
<tr>
<td>size</td>
<td>1 (cm)</td>
<td>arc radius.</td>
</tr>
<tr>
<td>mark</td>
<td>none</td>
<td>choice of mark.</td>
</tr>
<tr>
<td>mksize</td>
<td>4pt</td>
<td>symbol size (mark).</td>
</tr>
<tr>
<td>mkcolor</td>
<td>black</td>
<td>symbol color (mark).</td>
</tr>
<tr>
<td>mkpos</td>
<td>0.5</td>
<td>position of the symbol on the arc.</td>
</tr>
</tbody>
</table>

27.13.1. Example with `mark = x` and with `mark = ||`

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,5/0/A,3/4/B}
\tkzMarkAngle[size = 4,mark = x,arc=ll,mkcolor = red,mkpos=.33](A,O,B)
\tkzMarkAngle[size = 2,mark = ||,arc=ll,mkcolor = blue,mkpos=.66](A,O,B)
\tkzDrawLines(O,A O,B)
\tkzDrawPoints(O,A,B)
\end{tikzpicture}

With common options, there is a macro for multiple angles.

27.14. Marking a right angle: `\tkzMarkRightAngle`

\tkzMarkRightAngle[\(\text{\textit{local options}}\)](\langle A,0,B \rangle)\(\langle A',0',B' \rangle\) etc.

The `german` option allows you to change the style of the drawing. The option `size` allows to change the size of the drawing.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>german</td>
<td>normal</td>
<td>german arc with inner point.</td>
</tr>
<tr>
<td>size</td>
<td>0.2</td>
<td>side size.</td>
</tr>
</tbody>
</table>
27.14.1. Example of marking a right angle

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P}
\tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H}
\tkzDrawLines[add=.5 and .5](P,H)
\tkzMarkRightAngle[fill=blue!20,size=.5,draw](A,H,P)
\tkzDrawLines[add=.5 and .5](A,B)
\tkzMarkRightAngle[fill=red!20,size=.8](B,H,P)
\tkzDrawPoints[](A,B,P,H)
\end{tikzpicture}

27.14.2. Example of marking a right angle, german style

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P}
\tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H}
\tkzDrawLines[add=.5 and .5](P,H)
\tkzMarkRightAngle[german,size=.5,draw](A,H,P)
\tkzDrawPoints[](A,B,P,H)
\tkzDrawLines[add=.5 and .5](A,B)
\tkzMarkRightAngle[german,size=.8](P,H,B)
\end{tikzpicture}

27.14.3. Mix of styles

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,1){B}
\tkzDefPoint(2,5){C}
\tkzDefPointBy[projection=onto B--A](C)
\tkzGetPoint{H}
\tkzDrawLine(A,B)
\tkzDrawLine[add = .5 and .2,color=red](C,H)
\tkzMarkRightAngle[size=1,color=red](C,H,A)
\tkzMarkRightAngle[german,size=.8,color=blue](B,H,C)
\tkzFillAngle[opacity=.2,fill=blue!20,size=.8](B,H,C)
\tkzLabelPoints(A,B,C,H)
\tkzDrawPoints(A,B,C,H)
\end{tikzpicture}
27.14.4. Full example

\begin{tikzpicture}[rotate=-90]
 \tkzDefPoint(0,1){A}
 \tkzDefPoint(2,4){C}
 \tkzDefPointWith[orthogonal normed,K=7](C,A)
 \tkzGetPoint{B}
 \tkzDrawSegment[green!60!black](A,C)
 \tkzDrawSegment[green!60!black](C,B)
 \tkzDrawSegment[green!60!black](B,A)
 \tkzDefSpcTriangle[orthic](A,B,C){N,O,P}
 \tkzDrawLine[dashed,color=magenta](C,P)
 \tkzLabelPoint[left](A){A}
 \tkzLabelPoint[right](B){B}
 \tkzLabelPoint[above](C){C}
 \tkzLabelPoint[left](P){P}
 \tkzLabelSegment[auto](B,A){c}
 \tkzLabelSegment[auto,swap](B,C){a}
 \tkzLabelSegment[auto,swap](C,A){b}
 \tkzMarkAngle[size=1,color=cyan,mark=|](C,B,A)
 \tkzMarkAngle[size=1,color=cyan,mark=|](A,C,P)
 \tkzMarkAngle[size=0.75,color=orange,mark=||](P,C,B)
 \tkzMarkAngle[size=0.75,color=orange,mark=||](B,A,C)
 \tkzMarkRightAngle[german](A,C,B)
 \tkzMarkRightAngle[german](B,P,C)
\end{tikzpicture}

27.15. \texttt{tkzMarkRightAngles}

\texttt{tkzMarkRightAngles[(local options)](⟨A,O,B⟩)(⟨A',O',B'⟩)etc.}

With common options, there is a macro for multiple angles.

27.16. Angles Library

If you prefer to use TikZ library \texttt{angles}, you can mark angles with the macro \texttt{tkzPicAngle} and \texttt{tkzPicRightAngle}.

\texttt{tkzPicAngle[(tikz options)](⟨A,O,B⟩)}

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tikz option</td>
<td>see below</td>
<td>drawing of the angle $\angle AOB$.</td>
</tr>
</tbody>
</table>

\texttt{tkzPicRightAngle[(tikz options)](⟨A,O,B⟩)}

<table>
<thead>
<tr>
<th>options</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tikz option</td>
<td>see below</td>
<td>drawing of the right angle $\angle AOB$.</td>
</tr>
</tbody>
</table>

You need to know possible options of the \texttt{angles} library

\texttt{tkz-euclide} \hfill AlterMundus
27.16.1. Angle with TikZ

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDefTriangle[right,swap](A,B) \tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[below](B,A)
\tkzLabelPoints[above right](C)
\tkzPicAngle["α",draw=orange,
\textcolor{orange}{<->},angle eccentricity=1.2,
\textcolor{orange}{angle radius=1cm}](B,A,C)
\tkzPicRightAngle[draw,red,thick,
\textcolor{red}{angle eccentricity=.5},
\textcolor{red}{pic text=.}](C,B,A)
\end{tikzpicture}
Part VI.

Labelling
28. Labelling

28.1. Label for a point

It is possible to add several labels at the same point by using this macro several times.

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(4,0){B}
 \tkzDefPoint(0,3){C}
 \tkzDrawSegments(A,B B,C C,A)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoint[left,red](A){A}
 \tkzLabelPoint[right,blue](B){B}
 \tkzLabelPoint[above,purple](C){C}
\end{tikzpicture}

28.1.2. Label and reference

The reference of a point is the object that allows to use the point, the label is the name of the point that will be displayed.

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_1}
\end{tikzpicture}

28.2. Add labels to points \tkzLabelPoints

It is possible to place several labels quickly when the point references are identical to the labels and when the labels are placed in the same way in relation to the points. By default, \texttt{below right} is chosen.

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_2}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_3}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_4}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_5}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_6}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_7}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_8}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_9}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{10}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{11}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{12}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{13}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{14}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{15}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{16}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{17}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{18}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{19}}
\end{tikzpicture}

\begin{tikzpicture}
 \tkzDefPoint(2,0){A}
 \tkzDrawPoint(A)
 \tkzLabelPoint[above](A){A_{20}}
\end{tikzpicture}

This macro reduces the number of lines of code, but it is not obvious that all points need the same label positioning.
28.2.1. Example with `\tkzLabelPoints`

```latex
\begin{tikzpicture}
\tkzDefPoint(2,3){A}
\tkzDefShiftPoint[A](30:2){B}
\tkzDefShiftPoint[A](30:5){C}
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}
```

28.3. Automatic position of labels `\tkzAutoLabelPoints`

The label of a point is placed in a direction defined by a center and a point `center`. The distance to the point is determined by a percentage of the distance between the center and the point. This percentage is given by `dist`.

```latex
\tkzLabelPoints[⟨local options⟩]{⟨A₁, A₂, ...⟩}
```

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of points</td>
<td>\tkzLabelPoint(A,B,C)</td>
<td>Display of A, B and C</td>
</tr>
</tbody>
</table>

28.3.1. Label for points with `\tkzAutoLabelPoints`

Here the points are positioned relative to the center of gravity of A, B, C and O.

```latex
\begin{tikzpicture}[scale=1]
\tkzDefPoint(2,1){O}
\tkzDefRandPointOn[circle=center O radius 1.5]\tkzGetPoint{A}
\tkzDefPointBy[rotation=center O angle 100](A)\tkzGetPoint{C}
\tkzDefPointBy[rotation=center O angle 78](A)\tkzGetPoint{B}
\tkzDrawCircle(O,A)
\tkzDrawPoints(O,A,B,C)
\tkzDrawSegments(C,B B,A A,O O,C)
\tkzDefCentroid(A,B,C,O)
\tkzDrawPoint(tkzPointResult)
\tkzLabelPoints(O,A,C,B)
\end{tikzpicture}
```

29. Label for a segment

```latex
\tkzLabelSegment[⟨local options⟩]{⟨pt1,pt2⟩}{⟨label⟩}
```

This macro allows you to place a label along a segment or a line. The options are those of TikZ for example `pos`.

<table>
<thead>
<tr>
<th>argument</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>\tkzLabelSegment(A,B){5}</td>
<td>label text</td>
</tr>
<tr>
<td>(pt1,pt2)</td>
<td>(A,B)</td>
<td>label along [AB]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>.5</td>
<td>label's position</td>
</tr>
</tbody>
</table>
29.0.1. First example

\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(6,0){B}
 \tkzDrawSegment(A,B)
 \tkzLabelSegment[above,pos=.8](A,B){a}
 \tkzLabelSegment[below,pos=.2](A,B){4}
\end{tikzpicture}

29.0.2. Example : blackboard

\begin{tikzpicture}[show background rectangle,scale=.4]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(1,0){I}
 \tkzDefPoint(10,0){A}
 \tkzDefPointWith[orthogonal normed,K=4](I,A)
 \tkzGetPoint{H}
 \tkzDefMidPoint(O,A) \tkzGetPoint{M}
 \tkzInterLC(I,H)(M,A) \tkzGetPoints{B}{C}
 \tkzDrawSegments[color=white,line width=1pt](I,H O,A)
 \tkzDrawPoints[color=white](O,I,A,B,M)
 \tkzMarkRightAngle[color=white,line width=1pt](A,I,B)
 \tkzDrawArc[color=white,line width=1pt,style=dashed](M,A)(O)
 \tkzLabelSegment[white,right=1ex,pos=.5](I,B){\sqrt{a}}
 \tkzLabelSegment[white,below=1ex,pos=.5](O,I){1}
 \tkzLabelSegment[pos=.6,white,below=1ex](I,A){a}
\end{tikzpicture}

29.0.3. Labels and option : swap

\begin{tikzpicture}[rotate=-60]
 \tkzSetUpStyle[red,auto]{label style}
 \tkzDefPoint(0,1){A}
 \tkzDefPoint(2,4){C}
 \tkzDefPointWith[orthogonal normed,K=7](C,A)
 \tkzGetPoint{B}
 \tkzDefSpcTriangle[orthic](A,B,C){N,O,P}
 \tkzDefTriangleCenter[circum](A,B,C)
 \tkzGetPoint{O}
 \tkzDrawPolygon[green!60!black](A,B,C)
 \tkzDrawLine[dashed,color=magenta](C,P)
 \tkzLabelSegment(B,A){c}
 \tkzLabelSegment[swap](B,C){a}
 \tkzLabelSegment[swap](C,A){b}
 \tkzMarkAngles[size=1,color=cyan,mark=||](C,B,A A,C,P)
 \tkzMarkAngle[size=6.75, color=orange,mark=||](P,C,B)
 \tkzMarkAngle[size=6.75, color=orange,mark=||](B,A,C)
 \tkzMarkRightAngles[german](A,C,B B,P,C)
 \tkzAutoLabelPoints[center = 0,dist = .1](A,B,C)
 \tkzLabelPoint[below left](P){P}
\end{tikzpicture}
30. Add labels on a straight line \texttt{\tkzLabelLine}

\[\texttt{\tkzLabelSegments[\{local options\}]{\{pt1,pt2 pt3,pt4 \ldots\}}}\]

The arguments are a two-point couple list. The styles of TikZ are available for plotting.

29.0.4. Labels for an isosceles triangle

\begin{tikzpicture}[scale=1]
\tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C}
\tkzDrawSegments(O,A A,B)
\tkzDrawPoints(O,A,B)
\tkzDrawLine(O,B)
\tkzLabelSegments[color=red,above=4pt]{O,A A,B}{a}
\end{tikzpicture}

30. Add labels on a straight line \texttt{\tkzLabelLine}

\[\texttt{\tkzLabelLine[\{local options\}]{\{pt1,pt2\}\{label\}}}\]

<table>
<thead>
<tr>
<th>arguments</th>
<th>default definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>\tkzLabelLine(A,B){Δ}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>default definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos .5</td>
<td>pos is an option for TikZ, but essential in this case…</td>
</tr>
</tbody>
</table>

As an option, and in addition to the pos, you can use all styles of TikZ, especially the placement with above, right, ...

30.0.1. Example with \texttt{\tkzLabelLine}

An important option is pos, it's the one that allows you to place the label along the right. The value of pos can be greater than 1 or negative.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,1/1/C}
\tkzDefLine[perpendicular=through C,K=-1](A,B)
\tkzGetPoint{c}
\tkzDrawLines(A,B C,c)
\tkzLabelLine[pos=1.25,blue,right]{C,c}{(δ)}
\tkzLabelLine[pos=-0.25,red,left]{C,c}{again (δ)}
\end{tikzpicture}

30.1. Label at an angle : \texttt{\tkzLabelAngle}

\[\texttt{\tkzLabelAngle[\{local options\}]{\{A,0,B\}}}\]

There is only one option, dist (with or without unit), which can be replaced by the TikZ's pos option (without unit for the latter). By default, the value is in centimeters.
Add labels on a straight line \texttt{tkzLabelLine}

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>1</td>
<td>or dist, controls the distance from the top to the label.</td>
</tr>
</tbody>
</table>

It is possible to move the label with all TikZ options: rotate, shift, below, etc.

30.1.1. Example author js bibra stackexchange

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){C}
\tkzDefPoint(20:9){B}
\tkzDefPoint(80:5){A}
\tkzDefPointsBy[projection=onto B--C](A){a}
\tkzDrawPolygon[thick,fill=yellow!15](A,B,C)
\tkzDrawSegment[dashed, red](A,a)
\tkzDrawSegment[style=red, dashed, dim={10,15pt,midway,font=\scriptsize, rotate=90}](A,a)
\tkzMarkAngle(B,C,A)
\tkzMarkRightAngle(A,a,C)
\tkzMarkRightAngle(C,A,B)
\tkzFillAngle[fill=blue!20, opacity=0.5](B,C,A)
\tkzFillAngle[fill=red!20, opacity=0.5](A,B,C)
\tkzLabelAngle[pos=1.25](A,B,C){β}
\tkzLabelAngle[pos=1.25](B,C,A){α}
\tkzMarkAngle(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above](A)
\end{tikzpicture}

30.1.2. With pos

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/O,5/0/A,3/4/B}
\tkzMarkAngle[size = 4, mark = ||, arc=ll,color = red](A,O,B)
\tkzFillAngle[fill=blue!20, opacity=0.5](B,O,A)
\tkzLabelAngle[pos=1.25](B,O,A){α}
\tkzMarkAngle(A,O,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above](A)
\end{tikzpicture}
30.1.3. pos and \texttt{\tkzLabelAngles}

\begin{tikzpicture}[rotate=30]
\tkzDefPoint(2,1){S}
\tkzDefPoint(7,3){T}
\tkzDefPointBy[rotation=center S angle 60](T)
\tkzGetPoint{P}
\tkzDefLine[bisector,normed](T,S,P)
\tkzGetPoint{s}
\tkzLabelPoints(S,T)
\tkzDrawPoints(S,T,P)
\tkzDrawPolygon[color=blue](S,T,P)
\tkzDrawLine[dashed,color=blue,add=0 and 3](S,s)
\tkzLabelPoint[above right](P){P}
\tkzMarkAngle[size = 1.8,mark = |,arc=ll, color = blue](T,S,P)
\tkzMarkAngle[size = 2.1,mark = |,arc=1, color = blue](T,S,s)
\tkzMarkAngle[size = 2.3,mark = |,arc=1, color = blue](s,S,P)
\tkzLabelAngle[pos = 1.5](T,S,P){60°}
\tkzLabelAngles[pos = 2.7](T,S,s,s,P){30°}
\end{tikzpicture}

\texttt{\tkzLabelAngles}[\texttt{\textit{local options}}](\texttt{\langle A,0,B \rangle})\texttt{(\langle A',0',B' \rangle) etc.}

With common options, there is a macro for multiple angles.

It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \texttt{\tkzLabelCircle}.

30.2. Giving a label to a circle

\texttt{\tkzLabelCircle[\texttt{\textit{tikz options}}](\texttt{\langle 0,A \rangle})(\texttt{\langle angle \rangle})\texttt{\{\texttt{label}\}}}.

<table>
<thead>
<tr>
<th>options</th>
<th>default definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{tikz options}</td>
<td>\texttt{circle O center through A}</td>
</tr>
</tbody>
</table>

\textit{We can use the styles from \textit{TikZ}. The label is created and therefore "passed" between braces.}
31. Label for an arc

\begin{tikzpicture}
 \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N}
 \tkzDefPointBy[rotation=center O angle 50](N)
 \tkzGetPoint{M}
 \tkzDefPointBy[rotation=center O angle -20](N)
 \tkzGetPoint{P}
 \tkzDefPointBy[rotation=center O angle 125](N)
 \tkzGetPoint{P'}
 \tkzLabelCircle[above=4pt](O,N)(120){\mathcal{C}}
 \tkzDrawCircle(O,M)
 \tkzFillCircle[color=blue!10,opacity=.4](O,M)
 \tkzLabelCircle[draw,\text width=2cm,text centered,left=24pt](O,M)(-120)
 \tkzDrawPoints(M,P) \tkzLabelPoints[right](M,P)
\end{tikzpicture}

31. Label for an arc

\tkzLabelArc\[local options\](\pt1,\pt2,\pt3){\label} \This macro allows you to place a label along an arc. The options are those of TikZ for example \pos.

<table>
<thead>
<tr>
<th>argument</th>
<th>example</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>\tkzLabelArc(A,B){5}</td>
<td>label text</td>
</tr>
<tr>
<td>(\pt1,\pt2,\pt3)</td>
<td>(O,A,B)</td>
<td>label along the arc AB</td>
</tr>
</tbody>
</table>

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \pgfmathsetmacro\r{2}
 \tkzDefPoint(30:\r){A}
 \tkzDefPoint(85:\r){B}
 \tkzDrawCircle(O,A)
 \tkzDrawPoints(B,A,O)
 \tkzLabelArc[right=2pt](O,A,B){\widearc{AB}}
 \tkzLabelPoints(A,B,O)
\end{tikzpicture}

31.0.1. Label on arc

\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \pgfmathsetmacro\r{2}
 \tkzDefPoint(30:\r){A}
 \tkzDefPoint(85:\r){B}
 \tkzDrawCircle(O,A)
 \tkzDrawPoints(B,A,O)
 \tkzLabelArc[right=2pt](O,A,B){\widearc{AB}}
 \tkzLabelPoints(A,B,O)
\end{tikzpicture}
Part VII.

Complements
32. Using the compass

32.1. Main macro \tkzCompass

\[\begin{tikzpicture}
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4)(B,3)
\tkzGetPoints{C}{D}
\tkzDrawPoint(C)
\tkzCompass[length=1.5](A,C)
\tkzCompass(B,C)
\tkzDrawSegments(A,B A,C B,C)
\end{tikzpicture}\]

This macro allows you to leave a compass trace, i.e. an arc at a designated point. The center must be indicated. Several specific options will modify the appearance of the arc as well as TikZ options such as style, color, line thickness etc.

You can define the length of the arc with the option length or the option delta.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>0 (deg)</td>
<td>Increases the angle of the arc symmetrically</td>
</tr>
<tr>
<td>length</td>
<td>1 (cm)</td>
<td>Changes the length (in cm)</td>
</tr>
</tbody>
</table>

32.1.1. Option length

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzInterCC[R](A,4)(B,3)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompass[delta=20](A,C)
\tkzCompass[delta=20](B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkAngle(A,C,B)
\end{tikzpicture}

32.1.2. Option delta

\begin{tikzpicture}
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4)(B,3)
\tkzGetPoints{C}{D}
\tkzDrawPoint(C)
\tkzCompass[length=1.5](A,C)
\tkzCompass(B,C)
\tkzDrawSegments(A,B A,C B,C)
\end{tikzpicture}

32.2. Multiple constructions \tkzCompasss

\[\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(5,0){B}
\tkzInterCC[R](A,4)(B,3)
\tkzGetPoints{C}{D}
\tkzDrawPoints(A,B,C)
\tkzCompass[delta=20](A,C)
\tkzCompass[delta=20](B,C)
\tkzDrawPolygon(A,B,C)
\tkzMarkAngle(A,C,B)
\end{tikzpicture}\]

Attention the arguments are lists of two points. This saves a few lines of code.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>0</td>
<td>Modifies the angle of the arc by increasing it symmetrically</td>
</tr>
<tr>
<td>length</td>
<td>1</td>
<td>Changes the length</td>
</tr>
</tbody>
</table>

\tkz-euclide AlterMundus
32.2.1. Use \texttt{tkzCompasss}

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B}
\tkzDefPoint(3,4){C} \tkzDrawPoints(A,B)
\tkzDrawPoint[shape=cross out](C)
\tkzCompasss[new](A,B A,C B,C C,B)
\tkzShowLine[mediator,new,dashed,length = 2](A,B)
\tkzShowLine[parallel = through C, color=purple,length=2](A,B)
\tkzDefLine[mediator](A,B)
\tkzGetPoints{i}{j}
\tkzDefLine[parallel=through C](A,B)
\tkzGetPoint{D}
\tkzDrawLines[i,j](C,D A,C B,D)
\tkzDrawPoints(A,B,C,i,j,D)
\tkzLabelPoints(A,B,C,i,j,D)
\end{tikzpicture}

33. The Show

33.1. Show the constructions of some lines \texttt{tkzShowLine}

\begin{tikzpicture}
\tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C}
\tkzDrawLine(A,B)
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c}
\tkzShowLine[parallel=through C](A,B)
\tkzDrawLine(C,c)
\tkzDrawPoints(A,B,C,c)
\end{tikzpicture}

These constructions concern mediatrices, perpendicular or parallel lines passing through a given point and bisectors. The arguments are therefore lists of two or three points. Several options allow the adjustment of the constructions. The idea of this macro comes from \textbf{Yves Combe}.

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mediator</td>
<td>mediator</td>
<td>displays the constructions of a mediator</td>
</tr>
<tr>
<td>perpendicular</td>
<td>mediator</td>
<td>constructions for a perpendicular</td>
</tr>
<tr>
<td>orthogonal</td>
<td>mediator</td>
<td>idem</td>
</tr>
<tr>
<td>bisector</td>
<td>mediator</td>
<td>constructions for a bisector</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>circle within a triangle</td>
</tr>
<tr>
<td>length</td>
<td>1</td>
<td>in cm, length of a arc</td>
</tr>
<tr>
<td>ratio</td>
<td>.5</td>
<td>arc length ratio</td>
</tr>
<tr>
<td>gap</td>
<td>2</td>
<td>placing the point of construction</td>
</tr>
<tr>
<td>size</td>
<td>1</td>
<td>radius of an arc (see bisector)</td>
</tr>
</tbody>
</table>

You have to add, of course, all the styles of TikZ for tracings...

33.1.1. Example of \texttt{tkzShowLine} and parallel

\begin{tikzpicture}
\tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C}
\tkzDrawLine(A,B)
\tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c}
\tkzShowLine[parallel=through C](A,B)
\tkzDrawLine(C,c)
\tkzDrawPoints(A,B,C,c)
\end{tikzpicture}
33.1.2. Example of \tkzShowLine and perpendicular

\begin{tikzpicture}
\tkzDefPoints{0/0/A, 3/2/B, 2/2/C}
\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c}
\tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B)
\tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h}
\tkzMarkRightAngle[fill=lightgray](A,h,C)
\tkzDrawLines[add=.5 and .5](A,B C,c)
\tkzDrawPoints(A,B,C,h,c)
\end{tikzpicture}

33.1.3. Example of \tkzShowLine and bisector

\begin{tikzpicture}[scale=1.25]
\tkzDefPoints{0/0/A, 4/2/B, 1/4/C}
\tkzDrawPolygon(A,B,C)
\tkzSetUpCompass[color=brown,line width=.1 pt]
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection = onto A--B](I)
\tkzGetPoint{H}
\tkzShowLine[bisector,size=2,gap=3,blue](B,A,C)
\tkzShowLine[bisector,size=2,gap=3,blue](C,B,A)
\tkzDrawCircle[color=blue,line width=.2pt](I,H)
\tkzDrawSegments[color=red!50](I,tkzPointResult)
\tkzDrawLines[add=-0.1 and -0.1,color=red!50](I,a B,b)
\end{tikzpicture}

33.1.4. Example of \tkzShowLine and mediator

\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDrawPoints(A,B)
\tkzShowLine[mediator,color=orange,length=1](A,B)
\tkzGetPoints{i}{j}
\tkzDrawLines[i,j]
\tkzLabelPoints[below =3pt](A,B)
\end{tikzpicture}

33.2. Constructions of certain transformations \tkzShowTransformation

\begin{tikzpicture}
\tkzDefPoint(2,2){A}
\tkzDefPoint(5,4){B}
\tkzDrawPoints(A,B)
\tkzShowLine[mediator,color=orange,length=1](A,B)
\tkzGetPoints{i}{j}
\tkzDrawLines[i,j]
\tkzLabelPoints[below =3pt](A,B)
\end{tikzpicture}

These constructions concern orthogonal symmetries, central symmetries, orthogonal projections and translations. Several options allow the adjustment of the constructions. The idea of this macro comes from Yves Combe.

\textit{tkz-euclide AlterMundus}
33. The Show

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection= over pt1--pt2</td>
<td>reflection</td>
<td>constructions of orthogonal symmetry</td>
</tr>
<tr>
<td>symmetry=center pt</td>
<td>reflection</td>
<td>constructions of central symmetry</td>
</tr>
<tr>
<td>projection=onto pt1--pt2</td>
<td>reflection</td>
<td>constructions of a projection</td>
</tr>
<tr>
<td>translation=from pt1 to pt2</td>
<td>reflection</td>
<td>constructions of a translation</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>circle within a triangle</td>
</tr>
<tr>
<td>length</td>
<td>1</td>
<td>arc length</td>
</tr>
<tr>
<td>ratio</td>
<td>.5</td>
<td>arc length ratio</td>
</tr>
<tr>
<td>gap</td>
<td>2</td>
<td>placing the point of construction</td>
</tr>
<tr>
<td>size</td>
<td>1</td>
<td>radius of an arc (see bisector)</td>
</tr>
</tbody>
</table>

33.2.1. Example of the use of `\tkzShowTransformation`

\begin{tikzpicture}[scale=.6]
\tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} \tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B) \tkzLabelPoints(A,O,B) \tkzDrawLine[add= 2 and 2](O,A) \tkzDefPointBy[translation=from O to A](B) \tkzGetPoint{C} \tkzDrawPoint[color=orange](C) \tkzLabelPoints(C) \tkzShowTransformation[translation=from O to A,length=2](B) \tkzDefPointBy[reflection=over O--A](B) \tkzGetPoint{E} \tkzDrawSegment[blue](B,E) \tkzDrawPoint[color=blue](E) \tkzLabelPoints(E) \tkzShowTransformation[reflection=over O--A,size=2](B) \tkzDefPointBy[symmetry=center O](B) \tkzGetPoint{F} \tkzDrawSegment[green](B,F) \tkzDrawPoint[color=green](F) \tkzLabelPoints(F) \tkzShowTransformation[symmetry=center O,length=2](B) \tkzDefPointBy[projection=onto O--A](B) \tkzGetPoint{H} \tkzDrawSegments[color=magenta](C,H) \tkzDrawPoint[color=magenta](H) \tkzLabelPoints(H) \tkzShowTransformation[projection=onto O--A,color=red,size=3,gap=-2](C)
\end{tikzpicture}

33.2.2. Another example of the use of `\tkzShowTransformation`

You’ll find this figure again, but without the construction features.
34. Protractor

Based on an idea by Yves Combe, the following macro allows you to draw a protractor. The operating principle is even simpler. Just name a half-line (a ray). The protractor will be placed on the origin \(O \), the direction of the half-line is given by \(A \). The angle is measured in the direct direction of the trigonometric circle.

34.1. The macro \texttt{\tkzProtractor\[⟨local options⟩\]}\(⟨O,A⟩ \)

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>lw</td>
<td>0.4 pt</td>
<td>line thickness</td>
</tr>
<tr>
<td>scale</td>
<td>1</td>
<td>ratio: adjusts the size of the protractor</td>
</tr>
<tr>
<td>return</td>
<td>false</td>
<td>trigonometric circle indirect</td>
</tr>
</tbody>
</table>

34.1.1. The circular protractor

Measuring in the forward direction

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(2,0){A}\tkzDefPoint(0,0){O}
\tkzDefShiftPoint[A](31:5){B}
\tkzDefShiftPoint[A](158:5){C}
\tkzDrawPoints(A,B,C)
\tkzDrawSegments[color = red,
 line width = 1pt](A,B A,C)
\tkzProtractor[scale = 1](A,B)
\end{tikzpicture}
34.1.2. The circular protractor, transparent and returned

\begin{tikzpicture}[scale=.5]
 \tkzDefPoint(2,3){A}
 \tkzDefShiftPoint[A](31:5){B}
 \tkzDefShiftPoint[A](158:5){C}
 \tkzDrawSegments[color=red,line width=1pt](A,B,A,C)
 \tkzProtractor[return](A,C)
\end{tikzpicture}

35. Miscellaneous tools and mathematical tools

35.1. Duplicate a segment

This involves constructing a segment on a given half-line of the same length as a given segment.

\begin{verbatim}
\tkzDuplicateSegment((pt1,pt2),(pt3,pt4),(pt5)}
\end{verbatim}

This involves creating a segment on a given half-line of the same length as a given segment. It is in fact the definition of a point. \texttt{\tkzDuplicateSegment} is the new name of \texttt{\tkzDuplicateLen}.

\begin{tabular}{|c|c|c|}
 \hline
 arguments & example & explanation \\
 \hline
 (pt1,pt2)(pt3,pt4){pt5} & \tkzDuplicateSegment(A,B)(E,F){C} & AC=EF and C ∈ [AB) \\
 \hline
\end{tabular}

\textit{The macro} \texttt{\tkzDuplicateLength} \textit{is identical to this one.}

35.1.1. Use of \texttt{\tkzDuplicateSegment}

\begin{verbatim}
\begin{tikzpicture}[scale=.5]
 \tkzDefPoints{0/0/A,2/-3/B,2/5/C}
 \tkzDuplicateSegment(A,B)(A,C)
 \tkzGetPoint{D}
 \tkzDrawSegments[new](A,B,A,C)
 \tkzDrawSegment[teal](A,D)
 \tkzDrawPoints[new](A,B,C,D)
 \tkzLabelPoints[above right=3pt](A,B,C,D)
\end{tikzpicture}
\end{verbatim}

\texttt{tkz-euclide} AlterMundus
35. Miscellaneous tools and mathematical tools

35.1.2. Proportion of gold with \tkzDuplicateSegment

\begin{tikzpicture}[rotate=-90,scale=.4]
\tkzDefPoints{0/0/A,10/0/B}
\tkzDefMidPoint(A,B)
\tkzGetPoint(I)
\tkzDefPointWith[orthogonal,K=-.75](B,A)
\tkzGetPoint(C)
\tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D}
\tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E}
\tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M}
\tkzDrawArc[orange,delta=10](D,E)(B)
\tkzDrawArc[orange,delta=10](A,M)(E)
\tkzDrawLines(A,B B,C A,D)
\tkzDrawArc[orange,delta=10](B,D)(I)
\tkzDrawPoints(A,B,D,C,M,I)
\end{tikzpicture}

35.1.3. Golden triangle or sublime triangle

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,5/0/C,0/5/B}
\tkzDefMidPoint(A,C)\tkzGetPoint{H}
\tkzDuplicateSegment(H,B)(H,A)\tkzGetPoint{D}
\tkzDuplicateSegment(A,D)(A,B)\tkzGetPoint{E}
\tkzDuplicateSegment(A,D)(B,A)\tkzGetPoint{G}
\tkzInterCC(A,C)(B,G)\tkzGetSecondPoint{F}
\tkzDrawLine(A,C)
\tkzDrawArc(A,C)(B)
\begin{scope}[arc style/.style={color=gray,]
\tkzDrawArc(H,B)(D)
\tkzDrawArc(A,D)(B)
\tkzDrawArc(B,G)(F)
\end{scope}
\tkzDrawSegment[dashed](H,B)
\tkzCompass(B,F)
\tkzDrawPolygon[new](A,B,F)
\tkzDrawPoints(A,...,H)
\tkzLabelPoints[below left](A,...,H)
\end{tikzpicture}

35.2. Segment length \tkzCalcLength

There’s an option in TiKZ named veclen. This option is used to calculate AB if A and B are two points. The only problem for me is that the version of TiKZ is not accurate enough in some cases. My version uses the xfp package and is slower, but more accurate.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/0/C,0/5/B}
\tkzDefMidPoint(A,C)\tkzGetPoint{H}
\tkzDuplicateSegment(H,B)(H,A)\tkzGetPoint{D}
\tkzDuplicateSegment(A,D)(A,B)\tkzGetPoint{E}
\tkzDuplicateSegment(A,D)(B,A)\tkzGetPoint{G}
\tkzInterCC(A,C)(B,G)\tkzGetSecondPoint{F}
\tkzDrawLine(A,C)
\tkzDrawArc(A,C)(B)
\begin{scope}[arc style/.style={color=gray,]
\tkzDrawArc(H,B)(D)
\tkzDrawArc(A,D)(B)
\tkzDrawArc(B,G)(F)
\end{scope}
\tkzDrawSegment[dashed](H,B)
\tkzCompass(B,F)
\tkzDrawPolygon[new](A,B,F)
\tkzDrawPoints(A,...,H)
\tkzLabelPoints[below left](A,...,H)
\end{tikzpicture}

You can store the result with the macro \tkzGetLength for example \tkzGetLength{dAB} defines the macro \dAB.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tkzCalcLength{(local options)}(pt1,pt2)</td>
<td>\tkzCalcLength(A,B)</td>
<td>\dAB gives AB in cm</td>
</tr>
</tbody>
</table>
35. Miscellaneous tools and mathematical tools

| Only one option options default example |
|--|-------------------------------------|
| cm true \tkzCalcLength(A,B) After \tkzGetLength{dAB} \dAB gives AB in cm |

35.2.1. Compass square construction

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzCalcLength(A,B) \tkzGetLength{dAB}
\tkzDefLine[perpendicular=through A](A,B) \tkzGetPoint{D}
\tkzDefPointWith[orthogonal,K=-1](B,A) \tkzGetPoint{F}
\tkzGetPoint{C}
\tkzDrawLine[add=.6 and .2](A,B)
\tkzDrawLine(A,D)
\tkzShowLine[orthogonal=through A,gap=2](A,B)
\tkzMarkRightAngle(B,A,D)
\tkzCompasss(A,D D,C)
\tkzDrawArc[R](B,\dAB)(80,110)
\tkzDrawPoints(A,B,C,D)
\tkzDrawSegments[color=gray,style=dashed](B,C C,D)
\tkzLabelPoints[below left](A,B,C,D)
\end{tikzpicture}

35.2.2. Example

The macro \tkzDefCircle[radius](A,B) defines the radius that we retrieve with \tkzGetLength, this result is in cm.

\begin{tikzpicture}[scale=.5]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,-4){B}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzCalcLength(M,B) \tkzGetLength{rAB}
\tkzDrawCircle(A,B)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\tkzDrawSegment[dashed](A,B){$\pgfmathprintnumber{\rAB}$}
\end{tikzpicture}

35.3. Transformation from pt to cm or cm to pt

Not sure if this is necessary and it is only a division by 28.45274 and a multiplication by the same number. The macros are:

\tkzpttocm((number))((name of macro))

The result is stored in a macro.

| arguments example explanation |
|--------------------------------|--------------------------------|
| (number)(name of macro) \tkzpttocm(128){len} len gives a number of tkznamecm |

\tkz-euclide AlterMundus
You’ll have to use \len along with \cm.

35.4. Change of unit

\tkzcmtopt\big<\text{number}\big>\big>{\text{name of macro}}

The result is stored in a macro.

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tkzcmtopt\big<5\big>\big>{\len}</td>
<td>\len</td>
<td>length in pts</td>
</tr>
</tbody>
</table>

The result can be used with \len pt.

35.5. Get point coordinates

\tkzGetPointCoord\big<\text{point}\big>\big>{\text{name of macro}}

<table>
<thead>
<tr>
<th>arguments</th>
<th>example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tkzGetPointCoord\big<A\big>\big>{A}</td>
<td>\Ax and \Ay give coordinates for A</td>
<td>Stores in two macros the coordinates of a point. If the name of the macro is \textit{p}, then \px and \py give the coordinates of the chosen point with the cm as unit.</td>
</tr>
</tbody>
</table>

35.5.1. Coordinate transfer with \tkzGetPointCoord

35.5.2. Sum of vectors with \tkzGetPointCoord
35.6. Swap labels of points

\texttt{\tkzSwapPoints((pt1,pt2))}

<table>
<thead>
<tr>
<th>arguments example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2) \tkzSwapPoints(A,B) now A has the coordinates of B</td>
<td></td>
</tr>
</tbody>
</table>

The points have exchanged their coordinates.

35.6.1. Use of \texttt{\tkzSwapPoints}

\begin{tikzpicture}
\tkzDefPoints{0/0/O,5/-1/A,2/2/B}
\tkzSwapPoints(A,B)
\tkzDrawPoints(O,A,B)
\tkzLabelPoints(O,A,B)
\end{tikzpicture}

35.7. Dot Product

In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

\texttt{\tkzDotProduct((pt1,pt2,pt3))}

The dot product of two vectors $\vec{u} = [a, b]$ and $\vec{v} = [a', b']$ is defined as: $\vec{u} \cdot \vec{v} = aa' + bb'$

$\vec{u} = pt1pt2 \vec{v} = pt1pt3$

<table>
<thead>
<tr>
<th>arguments example</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pt1,pt2,pt3) \tkzDotProduct(A,B,C) the result is $\vec{AB} \cdot \vec{AC}$</td>
<td></td>
</tr>
</tbody>
</table>

The result is a number that can be retrieved with \texttt{\tkzGetResult}.
35. Miscellaneous tools and mathematical tools

35.7.1. Simple example

\begin{tikzpicture}
\tkzDefPoints{-2/-3/A,4/0/B,1/3/C}
\tkzDefPointBy[projection= onto A--B](C)
\tkzGetPoint{H}
\tkzDrawSegment(C,H)
\tkzMarkRightAngle(C,H,A)
\tkzDrawSegments(vector style)(A,B,A,C)
\tkzDrawPoints(A,H) \tkzLabelPoints(A,B,H)
\tkzLabelPoints[above](C)
\tkzDotProduct(A,B,C) \tkzGetResult{pabc}
\pgfmathparse{round(10*pabc)/10}
\let\pabc\pgfmathresult
\node at (1,-3) {
\overrightarrow{PA}\cdot \overrightarrow{PB} = \pabc};
\tkzDotProduct(A,H,B) \tkzGetResult{phab}
\pgfmathparse{round(10*phab)/10}
\let\phab\pgfmathresult
\node at (1,-4) {PA \times PH = \phab};
\end{tikzpicture}

35.7.2. Cocyclic points

\begin{tikzpicture}[scale=.75]
\tkzDefPoints{1/2/O,5/2/B,2/2/P,3/3/Q}
\tkzInterLC[common=B](O,B)(O,B) \tkzGetFirstPoint{A}
\tkzInterLC[common=B](P,Q)(O,B) \tkzGetPoints{C}{D}
\tkzDrawCircle(O,B)
\tkzDrawSegments(A,B C,D)
\tkzDrawPoints(A,B,C,D,P)
\tkzLabelPoints(P)
\tkzLabelPoints[below left](A,C)
\tkzLabelPoints[above right](B,D)
\tkzDotProduct(P,A,B) \tkzGetResult{pab}
\pgfmathparse{round(10*pab)/10}
\let\pab\pgfmathresult
\tkzDotProduct(P,C,D) \tkzGetResult{pcd}
\pgfmathparse{round(10*pcd)/10}
\let\pcd\pgfmathresult
\node at (1,-3) {
\overrightarrow{PA}\cdot \overrightarrow{PB} = \overrightarrow{PC}\cdot \overrightarrow{PD}};
\node at (1,-4) {
\overrightarrow{PA}\cdot \overrightarrow{PB} = \pab};
\node at (1,-5) {
\overrightarrow{PC}\cdot \overrightarrow{PD} = \pcd};
\end{tikzpicture}
35.8. Power of a point with respect to a circle

\begin{tikzpicture}
\tkzDefPoints{-1/0/A,0/5/B,5/-1/C,7/1/D}
\tkzDrawCircles(A,B,C,D)
\tkzDefRadicalAxis(A,B,C,D) \tkzGetPoints{E}{F}
\tkzDrawLine[add=1 and 2](E,F)
\tkzDefPointOnLine[pos=1.5](E,F) \tkzGetPoint{H}
\tkzDefLine[tangent from = H](A,B) \tkzGetPoints{T}{T'}
\tkzDefLine[tangent from = H](C,D) \tkzGetPoints{S}{S'}
\tkzDrawSegments(H,T,H,T',H,S,H,S')
\tkzDrawPoints(A,B,C,D,E,F,H,T,T',S,S')
\tkzPowerCircle(H)(A,B) \tkzGetResult{pw}
\tkzDotProduct(H,S,S) \tkzGetResult{phtt}
\node {Power $\approx \pw \approx \phtt$};
\end{tikzpicture}

The result is a number that represents the power of a point with respect to a circle.

35.9. Radical axis

In geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. Here \tkzDefRadicalAxis(A,B,C,D) gives the radical axis of the two circles \(\mathcal{C}(A,B)\) and \(\mathcal{C}(C,D)\).

\begin{tikzpicture}
\tkzDefPoints{-1/0/A,0/5/B,5/-1/C,7/1/D}
\tkzDrawCircles(A,B,C,D)
\tkzDefRadicalAxis(A,B,C,D) \tkzGetPoints{E}{F}
\tkzDrawLine[add=1 and 2](E,F)
\tkzDefPointOnLine[pos=1.5](E,F) \tkzGetPoint{H}
\tkzDefLine[tangent from = H](A,B) \tkzGetPoints{T}{T'}
\tkzDefLine[tangent from = H](C,D) \tkzGetPoints{S}{S'}
\tkzDrawSegments(H,T,H,T',H,S,H,S')
\tkzDrawPoints(A,B,C,D,E,F,H,T,T',S,S')
\tkzPowerCircle(H)(A,B) \tkzGetResult{pw}
\tkzDotProduct(H,S,S) \tkzGetResult{phtt}
\node {Power $\approx \pw \approx \phtt$};
\end{tikzpicture}
35.9.1. Two circles disjointed

\begin{tikzpicture}[scale=.75]
 \tkzDefPoints{-1/0/A,0/2/B,4/-1/C,4/0/D}
 \tkzDrawCircles(A,B,C,D)
 \tkzDefRadicalAxis(A,B)(C,D)
 \tkzGetPoints{E}{F}
 \tkzDrawLine[add=1 and 2](E,F)
 \tkzDrawLine[add=.5 and .5](A,C)
\end{tikzpicture}

35.10. Two intersecting circles

\begin{tikzpicture}[scale=.5]
 \tkzDefPoints{-1/0/A,0/2/B,3/-1/C,3/-2/D}
 \tkzDrawCircles(A,C,B,D)
 \tkzDefRadicalAxis(A,C)(B,D)
 \tkzGetPoints{E}{F}
 \tkzDrawPoints(A,B,C,D,E,F)
 \tkzLabelPoints(A,B,C,D,E,F)
 \tkzDrawLine[add=.5 and 1](E,F)
 \tkzDrawLine[add=.25 and .25](A,B)
\end{tikzpicture}

35.11. Two externally tangent circles

\begin{tikzpicture}[scale=.5]
 \tkzDefPoints{0/0/A,4/0/B,6/0/C}
 \tkzDrawCircles(A,B,C,B)
 \tkzDefRadicalAxis(A,B)(C,B)
 \tkzGetPoints{E}{F}
 \tkzDrawPoints(A,B,C,D,E,F)
 \tkzLabelPoints(A,B,C,D,E,F)
 \tkzDrawLine[add=1 and 1](E,F)
 \tkzDrawLine[add=.5 and .5](A,B)
\end{tikzpicture}
35.12. Two circles tangent internally

\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,3/0/B,5/0/C}
\tkzDrawCircles(A,C B,C)
\tkzDefRadicalAxis(A,C)(B,C)
\tkzGetPoints{E}{F}
\tkzDrawPoints(A,B,C,E,F)
\tkzLabelPoints[below right](A,B,C,E,F)
\tkzDrawLine[add=1 and 1](E,F)
\tkzDrawLine[add=.5 and .5](A,B)
\end{tikzpicture}

35.12.1. Three circles

\begin{tikzpicture}[scale=.4]
\tkzDefPoints{0/0/A,5/0/a,7/-1/B,3/-1/b,5/-4/C,2/-4/c}
\tkzDrawCircles(A,a B,b C,c)
\tkzDefRadicalAxis(A,a)(B,b) \tkzGetPoints{i}{j}
\tkzDefRadicalAxis(A,a)(C,c) \tkzGetPoints{k}{l}
\tkzDefRadicalAxis(C,c)(B,b) \tkzGetPoints{m}{n}
\tkzDrawLines[new](i,j k,l m,n)
\end{tikzpicture}

35.13. \texttt{tkzIsLinear}, \texttt{tkzIsOrtho}

\begin{tabular}{|l|l|l|}
\hline
\texttt{tkzIsLinear((pt1,pt2,pt3))} & arguments & example & explanation \\
\hline
(pt1,pt2,pt3) & \texttt{tkzIsLinear(A,B,C)} & A,B,C aligned ? \\
\hline
\end{tabular}

\texttt{tkzIsLinear allows to test the alignment of the three points pt1,pt2,pt3.}

\begin{tabular}{|l|l|l|}
\hline
\texttt{tkzIsOrtho((pt1,pt2,pt3))} & arguments & explanation \\
\hline
(pt1,pt2,pt3) & \texttt{tkzIsOrtho(A,B,C)} & (AB) \perp (AC) ? \\
\hline
\end{tabular}

\texttt{tkzIsOrtho allows to test the orthogonality of lines (pt1pt2) and (pt1pt3).}
35. Miscellaneous tools and mathematical tools

35.13.1. Use of \texttt{\textbackslash tkzIsOrtho} and \texttt{\textbackslash tkzIsLinear}

\begin{tikzpicture}
\tkzDefPoints{1/-2/A,5/0/B}
\tkzDefCircle[diameter](A,B) \tkzGetPoint{O}
\tkzDrawCircle(O,A)
\tkzDefPointBy[rotation= center O angle 60](B)
\tkzGetPoint{C}
\tkzDefPointBy[rotation= center O angle 60](A)
\tkzGetPoint{D}
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,B,C,D)
\tkzIsOrtho(C,A,B)
\iftkzOrtho
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawPoints[blue](A,B,C,D)
\else
\tkzDrawPoints[red](A,B,C,D)
\fi
\tkzIsLinear(O,C,D)
\iftkzLinear
\tkzDrawSegment[orange](C,D)
\fi
\end{tikzpicture}

\begin{verbatim}
\begin{tikzpicture}
\tkzDefPoints{1/-2/A,5/0/B}
\tkzDefCircle[diameter](A,B) \tkzGetPoint{O}
\tkzDrawCircle(O,A)
\tkzDefPointBy[rotation= center O angle 60](B)
\tkzGetPoint{C}
\tkzDefPointBy[rotation= center O angle 60](A)
\tkzGetPoint{D}
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,B,C,D)
\tkzIsOrtho(C,A,B)
\iftkzOrtho
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawPoints[blue](A,B,C,D)
\else
\tkzDrawPoints[red](A,B,C,D)
\fi
\tkzIsLinear(O,C,D)
\iftkzLinear
\tkzDrawSegment[orange](C,D)
\fi
\end{tikzpicture}
\end{verbatim}
Part VIII.

Working with style
36. Predefined styles

The way to proceed will depend on your use of the package. A method that seems to me to be correct is to use as much as possible predefined styles in order to separate the content from the form. This method will be the right one if you plan to create a document (like this documentation) with many figures. We will see how to define a global style for a document. We will see how to use a style locally.

The file `tkz-euclide.cfg` contains the predefined styles of the main objects. Among these the most important are points, lines, segments, circles, arcs and compass traces. If you always use the same styles and if you create many figures then it is interesting to create your own styles. To do this you need to know what features you can modify. It will be necessary to know some notions of Ti\KZ.

The predefined styles are global styles. They exist before the creation of the figures. It is better to avoid changing them between two figures. On the other hand these styles can be modified in a figure temporarily. There the styles are defined locally and do not influence the other figures.

For the document you are reading here is how I defined the different styles.

\begin{verbatim}
\tkzSetUpColors[background=white,text=black]
\tkzSetUpPoint[size=2,color=teal]
\tkzSetUpLine[line width=.4pt,color=teal]
\tkzSetUpCompass[color=orange, line width=.4pt,delta=10]
\tkzSetUpArc[color=gray,line width=.4pt]
\tkzSetUpStyle[orange]{new}
\end{verbatim}

The macro `\tkzSetUpColors` allows you to set the background color as well as the text color. If you don't use it, the colors of your document will be used as well as the fonts. Let’s see how to define the styles of the main objects.

37. Points style

This is how the points are defined:

\begin{verbatim}
\tikzset{point style/.style = {
 draw = \tkz@euc@pointcolor,
 inner sep = 0pt,
 shape = \tkz@euc@pointshape,
 minimum size = \tkz@euc@pointsize,
 fill = \tkz@euc@pointcolor}}
\end{verbatim}

It is of course possible to use `\tikzset` but you can use a macro provided by the package. You can use the macro `\tkzSetUpPoint` globally or locally.

Let's look at this possibility.

37.1. Use of `\tkzSetUpPoint`

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>black</td>
<td>point color</td>
</tr>
<tr>
<td>size</td>
<td>3</td>
<td>point size</td>
</tr>
<tr>
<td>fill</td>
<td>black!50</td>
<td>inside point color</td>
</tr>
<tr>
<td>shape</td>
<td>circle</td>
<td>point shape circle, cross or cross out</td>
</tr>
</tbody>
</table>
37. Points style

37.1.1. Global style or local style

First of all here is a figure created with the styles of my documentation, then the style of the points is modified within the environment \texttt{tikzpicture}.

You can use the macro \texttt{\tkzSetUpPoint} globally or locally. If you place this macro in your preamble or before your first figure then the point style will be valid for all figures in your document. It will be possible to use another style locally by using this command within an environment \texttt{tikzpicture}.

Let's look at this possibility.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/0/B,3/2/C,3/1/D}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C)
\end{tikzpicture}

37.1.2. Local style

The style of the points is modified locally in the second figure.

\begin{tikzpicture}
\tkzSetUpPoint[size=4,color=red,fill=red!20]
\tkzDefPoints{0/0/A,5/0/B,3/2/C,3/1/D}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzDrawPoint[shape=cross out,thick](D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C)
\end{tikzpicture}

37.1.3. Style and scope

The points get back the initial style. Point D has a new style limited by the environment \texttt{scope}. It is also possible to use \{...\} or \texttt{begingroup ... endgroup}.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,5/0/B,3/2/C,3/1/D}
\tkzDrawPolygon(A,B,C)
\tkzSetUpPoint[size=4,color=red,fill=red!20]
\tkzDrawPoint(D)
\end{tikzpicture}

37.1.4. Simple example with \texttt{\tkzSetUpPoint}

\begin{tikzpicture}
\tkzSetUpPoint[shape = cross out,color=blue]
\tkzDefPoint(2,1){A}
\tkzDefPoint(4,0){B}
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B)
\end{tikzpicture}
38. Lines style

You have several possibilities to change the style of a line. You can modify the style of a line with \tkzSetUpLine or directly modify the style of the lines with \tikzset{line style/.style = ... }

Reminder about line width: There are a number of predefined styles that provide more “natural” ways of setting the line width. You can also redefine these styles.

<table>
<thead>
<tr>
<th>predefined style</th>
<th>value of line width</th>
</tr>
</thead>
<tbody>
<tr>
<td>ultra thin</td>
<td>0.1 pt</td>
</tr>
<tr>
<td>very thin</td>
<td>0.2 pt</td>
</tr>
<tr>
<td>thin</td>
<td>0.4 pt</td>
</tr>
<tr>
<td>semithick</td>
<td>0.6 pt</td>
</tr>
<tr>
<td>thick</td>
<td>0.8 pt</td>
</tr>
<tr>
<td>very thick</td>
<td>1.2 pt</td>
</tr>
<tr>
<td>ultra thick</td>
<td>1.6 pt</td>
</tr>
</tbody>
</table>

38.1. Use of \tkzSetUpLine

It is a macro that allows you to define the style of all the lines.

\tkzSetUpLine[(local options)]

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>black</td>
<td>colour of the construction lines</td>
</tr>
<tr>
<td>line width</td>
<td>0.4 pt</td>
<td>thickness of the construction lines</td>
</tr>
<tr>
<td>style</td>
<td>solid</td>
<td>style of construction lines</td>
</tr>
<tr>
<td>add</td>
<td>.2 and .2</td>
<td>changing the length of a line segment</td>
</tr>
</tbody>
</table>
38. Lines style

38.1.1. Change line width

\begin{tikzpicture}[scale=.75]
\tkzSetUpLine[line width=1pt]
\begin{scope}[rotate=-90]
\tkzDefPoints{6/6/A,10/0/B,10/6/C}
\tkzDefPointBy[projection = onto B--A](C)
\tkzGetPoint{H}
\tkzMarkRightAngle[size=.4, fill=teal!20](B,C,A)
\tkzMarkRightAngle[size=.4, fill=orange!20](B,H,C)
\tkzDrawPolygon(A,B,C)
\tkzDrawSegment[new](C,H)
\end{scope}
\tkzLabelSegment[below](C,B){a}
\tkzLabelSegment[right](A,C){b}
\tkzLabelSegment[left](A,B){c}
\tkzLabelSegment[color=red](C,H){h}
\tkzDrawPoints(A,B,C)
\tkzLabelPoints[above left](H)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above](A)
\end{tikzpicture}

38.1.2. Change style of line

\begin{tikzpicture}[scale=.5]
\tikzset{line style/.style = {color = gray, style=dashed}}
\tkzDefPoints{1/0/A,4/0/B,1/1/C,5/1/D}
\tkzDefPoints{1/2/E,6/2/F,0/4/A’,3/4/B’}
\tkzCalcLength(C,D)
\tkzGetLength{rCD}
\tkzCalcLength(E,F)
\tkzGetLength{rEF}
\tkzInterCC[R](A’,rCD)(B’,rEF)
\tkzGetPoints{I}{J}
\tkzDrawLine(A’,B’)
\tkzCompass(A’,B’)
\tkzDrawSegments(A,B,C,D,E,F)
\tkzDefCircle[R](B’,rEF)\tkzGetPoint{b’}
\tkzDrawCircles(A’,a’ B’,b’)
\begin{scope}
\tkzSetUpLine[color=red]
\tkzDrawSegments(A’,I,B’,I)
\end{scope}
\tkzDrawPoints(A,B,C,D,E,F,A’,B’,I,J)
\tkzLabelPoints(A,B,C,D,E,F,A’,B’,I,J)
\end{tikzpicture}
38.1.3. Example 3: extend lines

\begin{tikzpicture}[scale=.75]
\tkzSetUpLine[add=.5 and .5]
\tkzDefPoints{0/0/A,4/0/B,1/3/C}
\tkzDrawLines(A,B B,C A,C)
\tkzDrawPolygon[red,thick](A,B,C)
\tkzSetUpPoint[size=4,circle,color=red,fill=red!20]
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

39. Arc style

39.1. The macro \tkzSetUpArc

<table>
<thead>
<tr>
<th>options</th>
<th>default</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>black</td>
<td>colour of the lines</td>
</tr>
<tr>
<td>line width</td>
<td>.4pt</td>
<td>thickness of the lines</td>
</tr>
<tr>
<td>style</td>
<td>solid</td>
<td>style of construction lines</td>
</tr>
</tbody>
</table>

39.1.1. Use of \tkzSetUpArc

\begin{tikzpicture}
\def\r{3} \def\angle{200}
\tkzSetUpArc[delta=10,color=purple,line width=.2pt]
\tkzSetUpLabel[font=\scriptsize,red]
\tkzDefPoint(0,0){O}
\tkzDefPoint(\angle:\r){A}
\tkzInterCC(O,A)(A,O) \tkzGetPoints{C'}{C}
\tkzInterCC(O,A)(C,O) \tkzGetPoints{D'}{D}
\tkzInterCC(O,A)(D,O) \tkzGetPoints{X'}{X}
\tkzDrawCircle(O,A)
\tkzDrawArc(A,C')(C)
\tkzDrawArc(C,O)(D)
\tkzDrawArc(D,O)(X)
\tkzDrawLine[add=.1 and .1](A,X)
\tkzDrawPoints(O,A)
\tkzSetPoint[size=3,color=purple,fill=purple!10]
\tkzDrawPoints(C,C',D,X)
\tkzLabelPoints[below left](O,A)
\tkzLabelPoints[below](C')
\tkzLabelPoints[below right](X)
\tkzLabelPoints[above](C,D)
\end{tikzpicture}
40. Compass style, configuration macro \texttt{\tkzSetUpCompass}

The following macro will help to understand the construction of a figure by showing the compass traces necessary to obtain certain points.

40.1. The macro \texttt{\tkzSetUpCompass}

\begin{tabular}{|c|c|p{14cm}|}
\hline
\texttt{\tkzSetUpCompass} & \texttt{\langle local options \rangle} & \\
\hline
\texttt{color} & \texttt{black} & colour of the construction lines \\
\texttt{line width} & \texttt{0.4pt} & thickness of the construction lines \\
\texttt{style} & \texttt{solid} & style of lines : solid, dashed, dotted, ... \\
\texttt{delta} & \texttt{0} & changes the length of the arc \\
\hline
\end{tabular}

40.1.1. Use of \texttt{\tkzSetUpCompass}

\begin{tikzpicture}
\tkzSetUpCompass[color=red,delta=15]
\tkzDefPoint(1,1){A}
\tkzDefPoint(6,1){B}
\tkzInterCC[R](A,4)(B,4) \tkzGetPoints{C}{D}
\tkzCompass(A,C)
\tkzCompass(B,C)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}

40.1.2. Use of \texttt{\tkzSetUpCompass} with \texttt{\tkzShowLine}

\begin{tikzpicture}[scale=.75]
\tkzSetUpStyle[bisector,size=2,gap=3]{showbi}
\tkzSetUpCompass[color=teal,line width=.3 pt]
\tkzDefPoints{0/1/A, 8/3/B, 3/6/C}
\tkzDrawPolygon(A,B,C)
\tkzDefLine[bisector](B,A,C) \tkzGetPoint{a}
\tkzDefLine[bisector](C,B,A) \tkzGetPoint{b}
\tkzShowLine[showbi](B,A,C)
\tkzShowLine[showbi](C,B,A)
\tkzInterLL(A,a)(B,b) \tkzGetPoint{I}
\tkzDefPointBy[projection= onto A--B](I)
\tkzGetPoint{H}
\tkzDrawCircle[new](I,H)
\tkzDrawSegments[new](I,H)
\tkzDrawLines[new]{add=0 and .2,new}(A,I B,I)
\end{tikzpicture}

41. Label style

41.1. The macro \texttt{\tkzSetUpLabel}

The macro \texttt{\tkzSetUpLabel} is used to define the style of the point labels.
42. Own style

You can set your own style with \tkzSetUpStyle

42.1. The macro \tkzSetUpStyle

\tkzSetUpStyle{(local options)}

The options are the same as those of TikZ

42.1.1. Use of \tkzSetUpStyle

\begin{tikzpicture}
\tkzSetUpStyle[color=blue!20!black,fill=blue!20]{mystyle}
\tkzDefPoint(0,0){O}
\tkzDefPoint(0,1){A}
\tkzDefPoint(0,1){A}
\tkzDrawPoints(O)
\tkzDefPoints{0,0/A}{1,0/B}{-1,0/C}{0,-1/D}
\tkzLabelPoint[above right](A){$A(1,0)$}
\tkzLabelPoint[below left](D){$D(0,-1)$}
\end{tikzpicture}

43. How to use arrows

In some countries, arrows are used to indicate the parallelism of lines, to represent half-lines or the sides of an angle (rays).

Here are some examples of how to place these arrows. \texttt{tkz-euclide} loads a library called \texttt{arrows.meta}.

\begin{tikzpicture}
\tkzSetUpStyle[color=blue!20!black,fill=blue!20]{mystyle}
\tkzDefPoint(0,0){O}
\tkzDefPoint(0,1){A}
\tkzDrawPoints(O)
\tkzLabelPoint[above right](A){$A(1,0)$}
\tkzLabelPoint[below left](D){$D(0,-1)$}
\end{tikzpicture}
43.1. Arrows at endpoints on segment, ray or line

Stealth, Triangle, To, Latex and …which can be combined with reversed. That’s easy to place an arrow at one or two endpoints.

1. Triangle and Ray

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[-Triangle](A,B)
\end{tikzpicture}

2. Stealth and Segment

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Stealth-Stealth](A,B)
\end{tikzpicture}

3. Latex and Line

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawLine[red,Latex-Latex](A,B)
\tkzDrawPoints(A,B)
\end{tikzpicture}

4. To and Segment

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[To-To](A,B)
\end{tikzpicture}

5. Latex and Segment

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Latex-Latex](A,B)
\end{tikzpicture}

6. Latex and Ray

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[Latex-](A,B)
\end{tikzpicture}

7. Latex and Several rays

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B,5/-2/C}
\tkzDrawSegments[-Latex](A,B A,C)
\end{tikzpicture}
43. How to use arrows

43.1.1. Scaling an arrow head

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[latex[2]--latex[2]](A,B)
\end{tikzpicture}

43.1.2. Using vector style

\tikzset{vector style/.style={>=Latex,->}}
You can redefine this style.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/0/B}
\tkzDrawSegment[vector style](A,B)
\end{tikzpicture}

43.2. Arrows on middle point of a line segment

Arrows on lines are used to indicate that those lines are parallel. It depends on the country, in France we prefer to indicate outside the figure that $(A, B) \parallel (D, C)$. The code is an adaptation of an answer by muzimuzhi Z on the site tex.stackexchange.com.

Syntax:

- \texttt{tkz arrow} (Latex by default)
- \texttt{tkz arrow=<arrow end tip>}
- \texttt{tkz arrow=<arrow end tip> at <pos> (<pos> = .5 by default)}
- \texttt{tkz arrow={<arrow end tip>[<arrow options>] at <pos>}} option possible \texttt{scale}

Example usages:

\texttt{\tkzDrawSegment[tkz arrow=Stealth] (A,B)}
\texttt{\tkzDrawSegment[tkz arrow={To[scale=3] at .4}](A,B)}
\texttt{\tkzDrawSegment[tkz arrow={Latex[scale=5,blue] at .6}](A,B)}

43.2.1. In a parallelogram

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,4/2/C}
\tkzDefParallelogram(A,B,C)
\tkzGetPoint{D}
\tkzDrawSegments[tkz arrow](A,B D,C)
\tkzDrawSegments(B,C D,A)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above right](C,D)
\tkzDrawPoints(A,...,D)
\end{tikzpicture}
43. How to use arrows

43.2.2. A line parallel to another one

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B,1/2/C}
\tkzDefPointWith[colinear= at C](A,B)
\tkzGetPoint{D}
\tkzDrawSegments[tkz arrow=Triangle](A,B C,D)
\tkzLabelPoints(A,B,C)
\tkzDrawPoints(A,...,C)
\end{tikzpicture}

43.2.3. Arrow on a circle

It is possible to place an arrow on the first quarter of a circle. A rotation allows you to move the arrow.

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B}
\begin{scope}[rotate=150]
\tkzDrawCircle[tkz arrow={Latex[scale=2,red]}](A,B)
\end{scope}
\end{tikzpicture}

43.3. Arrows on all segments of a polygon

Some users of my package have asked me to be able to place an arrow on each side of a polygon. I used a style proposed by Paul Gaborit on the site tex.stackexchange.com.
\tikzset{tkz arrows/.style=
{postaction={on each path={tkz arrow={Latex[scale=2, color=black]}}}}}
You can change this style. With \texttt{tkz arrows} you can an arrow on each segment of a polygon

43.3.1. Arrow on each segment with \texttt{tkz arrows}

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDrawPolygon[tkz arrows](A,...,D)
\end{tikzpicture}
43. How to use \texttt{arrows}

43.3.2. Using \texttt{tkz arrows} with a circle

\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/B}
\tkzDrawCircle[tkz arrows](A,B)
\end{tikzpicture}
Part IX.

Examples
44. Different authors

44.1. Code from Andrew Swan

\begin{tikzpicture}[scale=1.25]
\def\radius{4}
\def\angle{40}
\pgfmathsetmacro{\htan}{tan(\angle)}
\tkzDefPoint(0,0){A} \tkzDefPoint(0,\radius){F}
\tkzDefPoint(\radius,0){B}
\tkzDefPointBy[rotation= center A \angle]{B}(C)
\tkzDefLine[perpendicular= through B,\angle=1]\tkzDefPoint(A,B)
\tkzGetPoint(b)
\tkzInterLL(A,C)(B,b) \tkzGetPoint(D)
\tkzDefLine[perpendicular= through C,\angle=-1]\tkzDefPoint(A,B)
\tkzGetPoint(c)
\tkzInterLL(C,c)(A,B) \tkzGetPoint(E)
\tkzDrawSector[fill=blue,opacity=0.1](A,B)(C)
\tkzDrawArc[thin](A,B)(F)
\tkzMarkAngle(B,A,C){\footnotesize x}
\tkzDrawPolygon(A,B,D)
\tkzDrawSegments(C,B)
\tkzDrawSegments[dashed,thin](C,E)
\tkzLabelPoints[above left](A)
\tkzLabelPoints[below right](B)
\tkzLabelPoints[above right](D)
\begin{scope}[/pgf/decoration/raise=5pt]
\draw [decorate,decoration={brace,mirror,amplitude=10pt},xshift=0pt,yshift=-4pt]
(A) -- (B) node[black,midway,yshift=-20pt]\footnotesize 1;
\draw [decorate,decoration={brace,amplitude=10pt},xshift=4pt,yshift=0pt]
(D) -- (B) node[black,midway,xshift=27pt]\footnotesize $\tan x$;
\draw [decorate,decoration={brace,amplitude=10pt},xshift=4pt,yshift=0pt]
(E) -- (C) node[black,midway,xshift=-27pt]\footnotesize $\sin x$;
\end{scope}
\end{tikzpicture}

44.2. Example: Dimitris Kapeta

You need in this example to use \texttt{mkpos=.2} with \texttt{tkzMarkAngle} because the measure of CAM is too small. Another possibility is to use \texttt{tkzFillAngle}.
44. Different authors

\begin{tikzpicture}[scale=1]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(2.5,0){N}
 \tkzDefPoint(-4.2,0.5){M}
 \tkzDefPointBy[rotation=center O angle 30](N)
 \tkzGetPoint{B}
 \tkzDefPointBy[rotation=center O angle -50](N)
 \tkzGetPoint{A}
 \tkzInterLC[common=B](M,B)(O,B) \tkzGetFirstPoint{C}
 \tkzInterLC[common=A](M,A)(O,A) \tkzGetFirstPoint{A'}
 \tkzMarkAngle[mkpos=.2, size=0.5](A,C,B)
 \tkzMarkAngle[mkpos=.2, size=0.5](A,M,C)
 \tkzDrawSegments(A,C M,A M,B A,B)
 \tkzDrawCircle(O,N)
 \tkzLabelCircle[above left](O,N)(120){\mathcal{C}}
 \begin{scope}[xfp]
 \tkzMarkAngle[mkpos=.2, size=1.2](C,A,M)
 \end{scope}
 \tkzDrawPoints(O, A, B, M, B, C)
 \tkzLabelPoints[right](O,A,B)
 \tkzLabelPoints[above left](M,C)
 \tkzLabelPoint[below left](A'){A'}
\end{tikzpicture}

44.3. Example: John Kitzmiller

Prove that \(\frac{AC}{CE} = \frac{BD}{DF} \).

Another interesting example from John, you can see how to use some extra options like decoration and postaction from TikZ with tkz-euclide.
44. Different authors

44.4. Example 1: from Indonesia

\begin{tikzpicture}[scale=1.5,decoration={markings, mark=at position 3cm with {\arrow[>=stealth]{>}}},]
\tkzDefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S}
\tkzDrawLines[postaction={decorate}](E,F,P,Q,R,S)
\tkzDefPoints{3.5/3/A, 5/3/B}
\tkzDrawSegments(E,A,F,B)
\tkzInterLL(E,A)(P,Q) \tkzGetPoint{C}
\tkzInterLL(B,F)(P,Q) \tkzGetPoint{D}
\tkzLabelPoints[above right](A,B)
\tkzLabelPoints[below](E,F)
\tkzLabelPoints[above left](C)
\tkzDrawSegments[style=dashed](A,F)
\tkzInterLL(A,F)(P,Q) \tkzGetPoint{G}
\tkzLabelPoints[above right](D,G)
\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](A,C,A,G)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](C,E,G,F)
\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F)
\end{tikzpicture}
44. Different authors

\begin{tikzpicture}[scale=3]
\tkzDefPoints{0/0/A,2/0/B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDefPointBy[rotation=center D angle 45](C)\tkzGetPoint{G}
\tkzDefSquare(G,D)\tkzGetPoints{E}{F}
\tkzInterLL(B,C)(E,F)\tkzGetPoint{H}
\tkzFillPolygon[gray!10](D,E,H,C,D)
\tkzDrawPolygon(A,...,D)\tkzDrawPolygon(D,...,G)
\tkzDrawSegment(B,E)
\tkzMarkSegments[mark=|,size=3pt,color=gray](A,B C,D A,E F,G G,D D,E)
\tkzMarkSegments[mark=||,size=3pt,color=gray](B,E E,H)
\tkzLabelPoints[left](A,D)
\tkzLabelPoints[right](B,C,F,H)
\tkzLabelPoints[above](G)
\tkzLabelPoints[below](E)
\tkzMarkRightAngles(D,A,B D,G,F)
\end{tikzpicture}

44.5. Example 2: from Indonesia

\begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.2}, seg/.style={thick,tkzdotted}, hidden pt/.style={fill=gray!40}, mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2},scale=2]
\tkzDefPoints{0/0/A,2.5/0/B,1.33/0.75/D,0/2.5/E,2.5/2.5/F}
\tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1}
\tkzDefLine[parallel=through B](A,D) \tkzGetPoint{I2}
\tkzDefLine[parallel=through E](A,D) \tkzGetPoint{I3}
\tkzDefLine[parallel=through D](A,E) \tkzGetPoint{I4}
\tkzInterLL(E,I3)(D,I4) \tkzGetPoint{H}
\tkzDefLine[parallel=through F](E,H) \tkzGetPoint{I5}
\tkzDefLine[parallel=through H](E,F) \tkzGetPoint{I6}
\tkzDefMidPoint(G,H) \tkzGetPoint{P} \tkzDefMidPoint(G,C) \tkzGetPoint{Q}
\tkzDefMidPoint(B,C) \tkzGetPoint{R} \tkzDefMidPoint(A,B) \tkzGetPoint{S}
\tkzDefMidPoint(A,D) \tkzGetPoint{T} \tkzDefMidPoint(E,H) \tkzGetPoint{U}
\tkzDefMidPoint(A,D) \tkzGetPoint{M} \tkzDefMidPoint(D,C) \tkzGetPoint{N}
\tkzInterLL(B,D)(S,R)\tkzGetPoint{L} \tkzInterLL(H,F)(U,P) \tkzGetPoint{K}
\tkzDefLine[parallel=through K](D,H) \tkzGetPoint{I7}
\tkzDefLine[parallel=through J](D,H) \tkzGetPoint{I8}
\tkzDefMidPoint(G,H) \tkzGetPoint{P} \tkzDefMidPoint(G,C) \tkzGetPoint{Q}
\tkzDefMidPoint(B,C) \tkzGetPoint{R} \tkzDefMidPoint(A,B) \tkzGetPoint{S}
\tkzDefMidPoint(A,E) \tkzGetPoint{T} \tkzDefMidPoint(E,H) \tkzGetPoint{U}
\tkzDefMidPoint(A,D) \tkzGetPoint{M} \tkzDefMidPoint(D,C) \tkzGetPoint{N}
\tkzInterLL(B,D)(S,R)\tkzGetPoint{L} \tkzInterLL(H,F)(U,P) \tkzGetPoint{K}
\tkzDefLine[parallel=through K](D,H) \tkzGetPoint{I7}
\tkzDefLine[parallel=through J](D,H) \tkzGetPoint{I8}
\tkzFillPolygon[pol](P,Q,R,S,T,U)
\tkzDrawSegments[seg](K,0 K,L P,Q R,S T,U C,D H,D A,D M,N B,D)
\tkzDrawPolygon(A,B,F,E)
\tkzDrawPoints[hidden pt](M,N,O,D)
\tkzMarkRightAngle[mra](L,O,K)
\tkzMarkSegments[mark=|,size=1pt.thick,color=gray](A,S B,S B,R C,R Q,C Q,G G,P H,P E,U H,U E,T A,T)
\tkzMarkSegments[mark=||,size=1pt.thick,color=gray](A,S B,S B,R C,R Q,C Q,G G,P H,P E,U H,U E,T A,T)
\tkzLabelAngle[pos=.3](K,L,O){\$\alpha\$}
\tkzLabelPoints[below](0,A,S,B) \tkzLabelPoints[above](H,P,G)
\tkzLabelPoints[left](T,E) \tkzLabelPoints[right](C,Q)
\tkzLabelPoints[above left](U,D,M) \tkzLabelPoints[above right](L,N)
\tkzLabelPoints[below right](F,R) \tkzLabelPoints[below left](K)
\end{tikzpicture}
44.6. Illustration of the Morley theorem by Nicolas François

\begin{tikzpicture}
\tkzInit[ymin=-3,ymax=5,xmin=-5,xmax=7]
\tkzClip
\tkzDefPoints{-2.5/-2/A,2/4/B,5/-1/C}
\tkzFindAngle(C,A,B) \tkzGetAngle{anglea}
\tkzDefPointBy[rotation=center A angle 1\times\text{anglea}/3](C) \tkzGetPoint{TA1}
\tkzDefPointBy[rotation=center A angle 2\times\text{anglea}/3](C) \tkzGetPoint{TA2}
\tkzDefPointBy[rotation=center B angle 1\times\text{angleb}/3](A) \tkzGetPoint{TB1}
\tkzDefPointBy[rotation=center B angle 2\times\text{angleb}/3](A) \tkzGetPoint{TB2}
\tkzDefPointBy[rotation=center C angle 1\times\text{anglec}/3](B) \tkzGetPoint{TC1}
\tkzDefPointBy[rotation=center C angle 2\times\text{anglec}/3](B) \tkzGetPoint{TC2}
\tkzInterLL(A,TA1)(B,TB2) \tkzGetPoint{U1}
\tkzInterLL(A,TA2)(B,TB1) \tkzGetPoint{V1}
\tkzInterLL(B,TB1)(C,TC2) \tkzGetPoint{U2}
\tkzInterLL(B,TB2)(C,TC1) \tkzGetPoint{V2}
\tkzInterLL(C,TC1)(A,TA2) \tkzGetPoint{U3}
\tkzInterLL(C,TC2)(A,TA1) \tkzGetPoint{V3}
\tkzDrawPolygons(A,B,C U1,U2,U3 V1,V2,V3)
\tkzDrawLines[add=2 and 2,very thin,dashed](A,TA1 B,TB1 C,TC1 A,TA2 B,TB2 C,TC2)
\tkzDrawPoints(U1,U2,U3,V1,V2,V3)
\tkzLabelPoint[left](V1){s_a} \tkzLabelPoint[right](V2){s_b}
\tkzLabelPoint[below](V3){s_c} \tkzLabelPoint[above left](A){A}
\tkzLabelPoints[above right](B,C) \tkzLabelPoint(U1){t_a}
\tkzLabelPoint[below left](U2){t_b} \tkzLabelPoint[above](U3){t_c}
\end{tikzpicture}
44.7. Gou gu theorem / Pythagorean Theorem by Zhao Shuang

Pythagoras was not the first person who discovered this theorem around the world. Ancient China discovered this theorem much earlier than him. So there is another name for the Pythagorean theorem in China, the Gou-Gu theorem. Zhao Shuang was an ancient Chinese mathematician. He rediscovered the “Gou gu theorem”, which is actually the Chinese version of the “Pythagorean theorem”. Zhao Shuang used a method called the “cutting and compensation principle”, he created a picture of “Pythagorean Round Square” Below the figure used to illustrate the proof of the “Gou gu theorem.” (code from Nan Geng)

\begin{tikzpicture}[scale=.8]
 \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){A'}
 \tkzInterCC[R](A, 5)(A', 3)
 \tkzDefSquare(A,B) \tkzGetPoints{C}{D}
 \tkzCalcLength(A,A') \tkzGetLength{lA}
 \tkzCalcLength(A',B) \tkzGetLength{lB}
 \pgfmathparse{\lA-\lB}
 \tkzInterLC[R](A,A')(A',\pgfmathresult)
 \tkzGetFirstPoint{D'}
 \tkzDefSquare(D',A')\tkzGetPoints{B'}{C'}
 \tkzDefLine[orthogonal=through D](D,D') \tkzGetPoint{d}
 \tkzDefLine[orthogonal=through A](A,A') \tkzGetPoint{a}
 \tkzDefLine[orthogonal=through C](C,C') \tkzGetPoint{c}
 \tkzInterLL(D,d)(C,c) \tkzGetPoint{E}
 \tkzInterLL(D,d)(A,a) \tkzGetPoint{F}
 \tkzDefSquare(E,F)\tkzGetPoints{G}{H}
 \tkzDrawPolygons[fill=teal!10](A,B,A' B,C,B' C,D,C',A',D')
 \tkzDrawPolygon[fill=green!10](A,B,A' B',C,B' C,D,C',A',D')
 \tkzDrawSegment[dim={a,-10pt,}](D,C')
 \tkzDrawSegment[dim={b,-10pt,}](C,C')
 \tkzDrawSegment[dim={c,-10pt,}](C,D)
 \tkzDrawPoints[fill=white,size=2](A,B,C,D,A',B',C',D')
 \tkzLabelPoints[left](A)
 \tkzLabelPoints[below](B)
 \tkzLabelPoints[right](C)
 \tkzLabelPoints[above](D)
 \tkzLabelPoints[right](A')
 \tkzLabelPoints[below right](B')
 \tkzLabelPoints[below left](C')
 \tkzLabelPoints[below](D')
\end{tikzpicture}
44.8. Reuleaux-Triangle

A well-known classic field of mathematics is geometry. You may know Euclidean geometry from school, with constructions by compass and ruler. Math teachers may be very interested in drawing geometry constructions and explanations. Underlying constructions can help us with general drawings where we would need intersections and tangents of lines and circles, even if it does not look like geometry. So, here, we will remember school geometry drawings. We will use the tkz-euclide package, which works on top of TikZ. We will construct an equilateral triangle. Then we extend it to get a Reuleaux triangle, and add annotations. The code is fully explained in the LaTeX Cookbook, Chapter 10, Advanced Mathematics, Drawing geometry pictures. Stefan Kottwitz
45. Some interesting examples

45.1. Square root of the integers

How to get $1, \sqrt{2}, \sqrt{3}$ with a rule and a compass.
45.2. About right triangle

We have a segment $[AB]$ and we want to determine a point C such that $AC = 8$ cm and ABC is a right triangle in B.

\begin{tikzpicture}[scale=.5]
 \tkzDefPoint["A" left](2,1){A}
 \tkzDefPoint["B" right](6,4){B}
 \tkzDefPointWith[orthogonal,K=-1](B,A)
 \tkzDrawLine[add = .5 and .5](B,tkzPointResult)
 \tkzInterLC[R](B,tkzPointResult)(A,8)
 \tkzGetPoints{J}{C}
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,C)
 \tkzCompass(A,C)
 \tkzMarkRightAngle(A,B,C)
 \tkzDrawLine[color=gray,style=dashed](A,C)
 \tkzLabelPoint[above](C){C}
\end{tikzpicture}

45.3. Archimedes

This is an ancient problem proved by the great Greek mathematician Archimedes. The figure below shows a semicircle, with diameter AB. A tangent line is drawn and touches the semicircle at B. Another tangent line at a point, C, on the semicircle is drawn. We project the point C on the line segment $[AB]$ on a point D. The two tangent lines intersect at the point T. Prove that the line (AT) bisects (CD).
45. Some interesting examples

\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D}
\tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I}
\tkzDefLine[orthogonal=through D](A,D) (A,D)
\tkzInterLC[R](D,tkzPointResult)(I,4) \tkzGetSecondPoint(C)
\tkzDefLine[orthogonal=through C](I,C) \tkzGetPoint(c)
\tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint(b)
\tkzInterLL(C,c)(B,b) \tkzGetPoint{T}
\tkzInterLL(A,T)(C,D) \tkzGetPoint{P}
\tkzDrawArc(I,B)(A)
\tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[new](I,C)
\tkzDrawLine[add = 1 and 0](C,T) \tkzDrawLine[add = 0 and 1](B,T)
\tkzMarkRightAngle(I,C,T)
\tkzDrawPoints(A,B,I,D,C,T)
\tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D)
\end{tikzpicture}
45.3.1. Square and rectangle of same area; Golden section

To construct Square and rectangle of same area.

\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){D} \tkzDefPoint(8,0){A}
\tkzDefSquare(D,A) \tkzGetPoints{B}{C}
\tkzDefMidPoint(D,A) \tkzGetPoint{E}
\tkzInterLC(D,A)(E,B)\tkzGetSecondPoint{F}
\tkzInterLC(A,B)(A,F)\tkzGetSecondPoint{G}
\tkzDefSquare(A,F)\tkzGetFirstPoint{H}
\tkzInterLL(C,D)(H,G)\tkzGetPoint{I}
\tkzFillPolygon[teal!10](I,G,B,C)
\tkzFillPolygon[teal!10](A,F,H,G)
\tkzDrawArc[angles](E,B)(0,120)
\tkzDrawSemiCircle(A,F)
\tkzDrawSegments(A,F E,B H,I F,H)
\tkzDrawPolygons(A,B,C,D)
\tkzDrawPoints(A,...,I)
\tkzLabelPoints[below right](A,E,D,F,I)
\tkzLabelPoints[above right](C,B,G,H)
\end{tikzpicture}
45. Some interesting examples

45.3.2. Steiner Line and Simson Line

Consider the triangle ABC and a point M on its circumcircle. The projections of M on the sides of the triangle are on a line (Steiner Line). The three closest points to M on lines AB, AC, and BC are collinear. It's the Simson Line.

\begin{tikzpicture}[scale=.75,rotate=-20]
 \tkzDefPoint(0,0){B}
 \tkzDefPoint(2,4){A} \tkzDefPoint(7,0){C}
 \tkzDefCircle[circum](A,B,C)
 \tkzDrawCircle(O,A)
 \tkzCalcLength(O,A)
 \tkzGetLength{rOA}
 \tkzDefShiftPoint[O](40:\rOA){M}
 \tkzDefShiftPoint[O](60:\rOA){N}
 \tkzDefTriangleCenter[orthic](A,B,C)
 \tkzGetPoint{H}
 \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
 \tkzDefPointsBy[reflection=over A--B](M,N){P,P'}
 \tkzDefPointsBy[reflection=over A--C](M,N){Q,Q'}
 \tkzDefPointsBy[reflection=over C--B](M,N){R,R'}
 \tkzDefMidPoint(M,P)\tkzGetPoint{I}
 \tkzDefMidPoint(M,Q)\tkzGetPoint{J}
 \tkzDefMidPoint(M,R)\tkzGetPoint{K}
 \tkzDrawSegments[new](P,R M,P M,Q M,R N,P' N,Q' N,R' P',R' I,K)
 \tkzDrawPolygons(A,B,C)
\end{tikzpicture}
45. Some interesting examples

45.4. Lune of Hippocrates

From Wikipedia: In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle. In the first figure, the area of the lune is equal to the area of the triangle ABC. Hippocrates of Chios (ancient Greek mathematician,)

\begin{tikzpicture}
\tkzInit[xmin=-2,xmax=5,ymin=-1,ymax=6]
\tkzClip % allows you to define a bounding box % large enough
\tkzDefPoint(0,0){A}\tkzDefPoint(4,0){B}
\tkzDefSquare(A,B)
\tkzGetFirstPoint{C}
\tkzDrawPolygon[fill=green!5](A,B,C)
\begin{scope}
\tkzClipCircle[out](B,A)
\tkzDefMidPoint(C,A) \tkzGetPoint{M}
\tkzDrawSemiCircle[fill=teal!5](M,C)
\end{scope}
\tkzDrawArc[delta=0](B,C)(A)
\end{tikzpicture}

45.5. Lunes of Hasan Ibn al-Haytham

From Wikipedia: the Arab mathematician Hasan Ibn al-Haytham (Latinized name Alhazen) showed that two lunes, formed on the two sides of a right triangle, whose outer boundaries are semicircles and whose inner boundaries are formed by the circumcircle of the triangle, then the areas of these two lunes added together are equal to the area of the triangle. The lunes formed in this way from a right triangle are known as the lunes of Alhazen.
Some interesting examples

\begin{tikzpicture}[scale=.5,rotate=180]
\tkzInit[xmin=-1,xmax=11,ymin=-4,ymax=7]
\tkzClip
\tkzDefPoints{0/0/A,8/0/B}
\tkzDefTriangle[pythagore,swap](A,B)
\tkzGetPoint{C}
\tkzDrawPolygon[fill=green!5](A,B,C)
\tkzDefMidPoint(C,A) \tkzGetPoint{I}
\begin{scope}
\tkzClipCircle[out](I,A)
\tkzDefMidPoint(B,A) \tkzGetPoint{x}
\tkzDrawSemiCircle[fill=teal!5](x,A)
\tkzDefMidPoint(B,C) \tkzGetPoint{y}
\tkzDrawSemiCircle[fill=teal!5](y,B)
\end{scope}
\tkzSetUpCompass[/tkzcompass/delta=0]
\tkzDefMidPoint(C,A) \tkzGetPoint{z}
\tkzDrawSemiCircle(z,A)
\end{tikzpicture}
45.6. About clipping circles

The problem is the management of the bounding box. First you have to define a rectangle in which the figure will be inserted. This is done with the first two lines.

\begin{tikzpicture}
\tkzInit[xmin=0,xmax=6,ymin=0,ymax=6]
\tkzClip
\tkzDefPoints{0/0/A, 6/0/B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefMidPoint(A,D) \tkzGetPoint{N}
\tkzDefMidPoint(B,C) \tkzGetPoint{O}
\tkzDefMidPoint(C,D) \tkzGetPoint{P}
\begin{scope}
\tkzClipCircle[out](M,B) \tkzClipCircle[out](P,D)
\tkzFillPolygon[teal!20](M,N,P,O)
\end{scope}
\begin{scope}
\tkzClipCircle[out](N,A) \tkzClipCircle[out](O,C)
\tkzFillPolygon[teal!20](M,N,P,O)
\end{scope}
\begin{scope}
\tkzClipCircle(P,C) \tkzClipCircle(N,A)
\tkzFillPolygon[teal!20](N,P,D)
\end{scope}
\begin{scope}
\tkzClipCircle(O,C) \tkzClipCircle(P,C)
\tkzFillPolygon[teal!20](P,C,O)
\end{scope}
\begin{scope}
\tkzClipCircle(M,B) \tkzClipCircle(O,B)
\tkzFillPolygon[teal!20](O,B,M)
\end{scope}
\begin{scope}
\tkzClipCircle(N,A) \tkzClipCircle(M,A)
\tkzFillPolygon[teal!20](A,M,N)
\end{scope}
\tkzDrawSemiCircles(M,B N,A O,C P,D)
\tkzDrawPolygons(A,B,C,D M,N,P,O)
\end{tikzpicture}
45. Some interesting examples

45.7. Similar isosceles triangles

The following is from the excellent site Descartes et les Mathématiques. I did not modify the text and I am only the author of the programming of the figures. http://debart.pagesperso-orange.fr/seconde/triangle.html

The following is from the excellent site Descartes et les Mathématiques. I did not modify the text and I am only the author of the programming of the figures. http://debart.pagesperso-orange.fr/seconde/triangle.html

Bibliography:

– Géométrie au Bac - Tangente, special issue no. 8 - Exercise 11, page 11
– Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" - POLE 2007 (200 new problems of "Le Monde")
– Affaire de logique n° 364 - Le Monde February 17, 2004

Two statements were proposed, one by the magazine Tangente and the other by Le Monde.

Editor of the magazine "Tangente": Two similar isosceles triangles AXB and BYC are constructed with main vertices X and Y, such that A, B and C are aligned and that these triangles are "indirect". Let \(\alpha \) be the angle at vertex \(\hat{AXB} = \hat{BYC} \). We then construct a third isosceles triangle XZY similar to the first two, with main vertex Z and "indirect". We ask to demonstrate that point Z belongs to the straight line (AC).

Editor of "Le Monde": We construct two similar isosceles triangles AXB and BYC with principal vertices X and Y, such that A, B and C are aligned and that these triangles are "indirect". Let \(\alpha \) be the angle at vertex \(\hat{AXB} = \hat{BYC} \). The point Z of the line segment \([AC] \) is equidistant from the two vertices X and Y. At what angle does he see these two vertices?

The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases.
45.8. Revised version of "Tangente"

\begin{tikzpicture}[scale=.8,rotate=60]
\tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y}
\tkzDefShiftPoint[X](-110:6){A} \tkzDefShiftPoint[X](-70:6){B}
\tkzDefShiftPoint[Y](-110:4.2){A'} \tkzDefShiftPoint[Y](-70:4.2){B'}
\tkzDefPointBy[translation= from A' to B](Y) \tkzGetPoint{Y}
\tkzDefPointBy[translation= from A' to B](B') \tkzGetPoint{C}
\tkzInterLL(A,B)(X,Y) \tkzGetPoint{O}
\tkzDefMidPoint(X,Y) \tkzGetPoint{I}
\tkzDefPointWith[orthogonal](I,Y)
\tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z}
\tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
\tkzDrawCircle(O,X)
\tkzDrawLines[add = 0 and 1.5](A,C) \tkzDrawLines[add = 0 and 3](X,Y)
\tkzDrawSegments(A,X B,X B,Y C,Y)
\tkzDrawSegments[color=red](X,Z Y,Z)
\tkzDrawPoints(A,B,C,X,Y,O,Z)
\tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O)
\end{tikzpicture}
45. Some interesting examples

45.9. "Le Monde" version

\begin{tikzpicture}[scale=1.25]
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(3,0){B}
 \tkzDefPoint(9,0){C}
 \tkzDefPoint(1.5,2){X}
 \tkzDefPoint(6,4){Y}
 \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
 \tkzDefMidPoint(X,Y) \tkzGetPoint{I}
 \tkzDefPointWith[orthogonal](I,Y) \tkzGetPoint{i}
 \tkzDrawLines[add = 2 and 1,color=orange](I,i)
 \tkzInterLL(I,i)(A,B) \tkzGetPoint{Z}
 \tkzInterLC(I,i)(O,B) \tkzGetFirstPoint{M}
 \tkzDefPointWith[orthogonal](B,Z) \tkzGetPoint{b}
 \tkzDrawCircle(O,B)
 \tkzDrawLines[add = 0 and 2,color=orange](B,b)
 \tkzDrawSegments(A,X B,X B,Y C,Y A,C X,Y)
 \tkzDrawSegments[color=red](X,Z Y,Z)
 \tkzDrawPoints(A,B,C,X,Y,Z,M,I)
 \tkzLabelPoints(A,B,C)
 \tkzLabelPoints[above right](X,Y,M,I)
\end{tikzpicture}
45. Some interesting examples

45.10. Triangle altitudes

From Wikipedia: The following is again from the excellent site Descartes et les Mathématiques (Descartes and the Mathematics). http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html. The three altitudes of a triangle intersect at the same H-point.

\begin{tikzpicture}
 \tkzDefPoint(0,0){C} \tkzDefPoint(7,0){B} \tkzDefPoint(5,6){A}
 \tkzDefMidPoint(C,B) \tkzGetPoint{I}
 \tkzInterLC(A,C)(I,B) \tkzGetFirstPoint{B'} \tkzInterLC(A,B)(I,B) \tkzGetSecondPoint{C'} \tkzInterLL(B,B')(C,C') \tkzGetPoint{H}
 \tkzInterLL(A,H)(C,B) \tkzGetPoint{A'} \tkzDefCircle[circum](A,B',C') \tkzGetPoint{O}
 \tkzDrawArc(I,B)(C) \tkzDrawPolygon(A,B,C) \tkzDrawCircle[color=red](O,A) \tkzDrawSegments[color=orange](B,B' C,C' A,A') \tkzMarkRightAngles(C,B',B B,C',C C,A',A) \tkzDrawPoints(A,B,C,A',B',C',H) \tkzLabelPoints[above right](A,B',C',H) \tkzLabelPoints[below right](B,C,A')
\end{tikzpicture}
45. Some interesting examples

45.11. Altitudes – other construction

\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B}
\tkzDefPoint(5,6){C}
\tkzDefMidPoint(A,B)\tkzGetPoint{O}
\tkzDefPointBy[projection=onto A--B](C) \tkzGetPoint{P}
\tkzInterLC[common=A](C,A)(O,A)
\tkzGetFirstPoint{M}
\tkzInterLC(C,B)(O,A)
\tkzGetSecondPoint{N}
\tkzInterLL(B,M)(A,N)
\tkzDefCircle[diameter](A,B)\tkzGetPoint{x}
\tkzDefCircle[diameter](I,C)\tkzGetPoint{y}
\tkzDrawCircles(x,A y,C)
\tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C)
\tkzDrawSegment[style=dashed,color=orange](C,P)
\tkzDrawPoints[color=red](M,N,P,I)
\tkzDrawPoints[color=brown](O,A,B,C)
\end{tikzpicture}
45.12. Three circles in an Equilateral Triangle

From Wikipedia: In geometry, the Malfatti circles are three circles inside a given triangle such that each circle is tangent to the other two and to two sides of the triangle. They are named after Gian Francesco Malfatti, who made early studies of the problem of constructing these circles in the mistaken belief that they would have the largest possible total area of any three disjoint circles within the triangle. Below is a study of a particular case with an equilateral triangle and three identical circles.

\begin{tikzpicture}[scale=.8]
 \tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c}
 \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
 \tkzDefMidPoint(A,B) \tkzGetPoint{M}
 \tkzDefMidPoint(B,C) \tkzGetPoint{N}
 \tkzDefMidPoint(A,C) \tkzGetPoint{P}
 \tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia}
 \tkzDefPointBy[projection = onto A--B](Ia) \tkzGetPoint{ha}
 \tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib}
 \tkzDefPointBy[projection = onto A--B](Ib) \tkzGetPoint{hb}
 \tkzInterLL(A,C)(M,C) \tkzGetPoint{Ic}
 \tkzDefPointBy[projection = onto A--C](Ic) \tkzGetPoint{hc}
 \tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G}
 \tkzDefSquare(A,B) \tkzGetPoints{D}{E}
 \tkzDrawPolygon(A,B,C)
 \tkzClipBB
 \tkzDrawSemiCircles[gray,dashed](M,B A,M A,B A,B A,ha)
 \tkzDrawCircles[gray](Ia,ha Ib,hb Ic,hc)
 \tkzDrawPolySeg(A,E,D,B)
 \tkzDrawPoints(A,B,C,G,Ia,Ib,Ic)
 \tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b a,a b,b B A,D Ia,ha)
\end{tikzpicture}
45.13. Law of sines

From wikipedia: In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.

In the triangle ABC

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \quad (1)
\]

\[
\frac{c}{2R} = \sin D = \sin C \quad (2)
\]

Then

\[
\frac{c}{\sin C} = 2R
\]
45.14. Flower of Life

Sacred geometry can be described as a belief system attributing a religious or cultural value to many of the fundamental forms of space and time. According to this belief system, the basic patterns of existence are perceived as sacred because in contemplating them one is contemplating the origin of all things. By studying the nature of these forms and their relationship to each other, one may seek to gain insight into the scientific, philosophical, psychological, aesthetic and mystical laws of the universe. The Flower of Life is considered to be a symbol of sacred geometry, said to contain ancient, religious value depicting the fundamental forms of space and time. In this sense, it is a visual expression of the connections life weaves through all mankind, believed by some to contain a type of Akashic Record of basic information of all living things.

One of the beautiful arrangements of circles found at the Temple of Osiris at Abydos, Egypt (Rawles 1997).

http://mathworld.wolfram.com/FlowerofLife.html
\begin{tikzpicture}[scale=.75]
\tkzSetUpLine[line width=2pt, color=teal!80!black]
\tkzSetUpCompass[line width=2pt, color=teal!80!black]
\tkzDefPoint(0,0){O} \tkzDefPoint(2.25,0){A}
\tkzDrawCircle(O,A)
\foreach \i in {0,...,5}{
 \tkzDefPointBy[rotation= center O angle 30+60*\i](A)\tkzGetPoint{a\i}
 \tkzDefPointBy[rotation= center {a\i} angle 120\i](O)\tkzGetPoint{b\i}
 \tkzDefPointBy[rotation= center {a\i} angle 180\i](O)\tkzGetPoint{c\i}
 \tkzDefPointBy[rotation= center {c\i} angle 120\i](a\i)\tkzGetPoint{d\i}
 \tkzDefPointBy[rotation= center {c\i} angle 60\i](d\i)\tkzGetPoint{f\i}
 \tkzDefPointBy[rotation= center {d\i} angle 60\i](f\i)\tkzGetPoint{g\i}
 \tkzDefPointBy[rotation= center {d\i} angle 180\i](e\i)\tkzGetPoint{k\i}
 \tkzDrawCircle(a\i,O)
 \tkzDrawCircle(b\i,a\i)
 \tkzDrawCircle(c\i,a\i)
 \tkzDrawArc[rotate](f\i,d\i)(-120)
 \tkzDrawArc[rotate](e\i,d\i)(180)
 \tkzDrawArc[rotate](d\i,e\i)(180)
 \tkzDrawArc[rotate](g\i,f\i)(60)
 \tkzDrawArc[rotate](h\i,d\i)(60)
 \tkzDrawArc[rotate](k\i,e\i)(60)
}
\tkzClipCircle(0,f0)
\end{tikzpicture}
45.15. Pentagon in a circle

To inscribe an equilateral and equiangular pentagon in a given circle.

\begin{tikzpicture}[scale=.75]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(5,0){A}
 \tkzDefPoint(0,5){B}
 \tkzDefPoint(-5,0){C}
 \tkzDefPoint(0,-5){D}
 \tkzDefMidPoint(A,O) \tkzGetPoint{I}
 \tkzInterLC(I,B)(I,A) \tkzGetPoints{F}{E}
 \tkzInterCC(O,C)(B,E) \tkzGetPoints{D3}{D2}
 \tkzInterCC(O,C)(B,F) \tkzGetPoints{D4}{D1}
 \tkzDrawArc[angles](B,E)(180,360)
 \tkzDrawArc[angles](B,F)(220,340)
 \tkzDrawLine[add=.5 and .5](B,I)
 \tkzDrawCircle(O,A)
 \tkzDefCircle[diameter](O,A) \tkzGetPoint{x}
 \tkzDrawCircle(x,A)
 \tkzDrawSegments(B,D C,A)
 \tkzDrawPolygon[new](D,D1,D2,D3,D4)
 \tkzDrawPoints(A,...,D,0)
 \tkzDrawPoints[new](E,F,I,D1,D2,D4,D3)
 \tkzLabelPoints[below right](I,E,F,D1,D2,D4,D3)
\end{tikzpicture}

tkz-euclide AlterMundus
45.16. Pentagon in a square

To inscribe an equilateral and equiangular pentagon in a given square.
45. Some interesting examples

45.17. Hexagon Inscribed

To inscribe a regular hexagon in a given equilateral triangle perfectly inside it (no boarders).

45.17.1. Hexagon Inscribed version 1

```latex
\begin{tikzpicture}[scale=.5]
\pgfmathsetmacro{\c}{6}
\tkzDefPoints{0/0/A,\c/0/B}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
\tkzDefTriangleCenter[centroid](A,B,C) \tkzGetPoint{I}
\tkzDefPointBy[homothety=center A ratio 1./3](B) \tkzGetPoint{c1}
\tkzInterLC(B,C)(I,c1) \tkzGetPoints{a1}{a2}
\tkzInterLC(A,C)(I,c1) \tkzGetPoints{b1}{b2}
\tkzInterLC(A,B)(I,c1) \tkzGetPoints{c1}{c2}
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle[thin,orange](I,c1)
\tkzDrawPolygon[red,thick](a2,a1,b2,b1,c2,c1)
\end{tikzpicture}
```

45.17.2. Hexagon Inscribed version 2

```latex
\begin{tikzpicture}[scale=.5]
\pgfmathsetmacro{\c}{6}
\tkzDefPoints{0/0/A,\c/0/B}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
\tkzDefTriangleCenter[centroid](A,B,C) \tkzGetPoint{I}
\tkzDefPointsBy[rotation= center I angle 60](A,B,C){a,b,c}
\tkzDrawPolygon[fill=teal!20,opacity=.5](A,B,C)
\tkzDrawPolygon[fill=purple!20,opacity=.5](a,b,c)
\end{tikzpicture}
```
45. Some interesting examples

45.18. Power of a point with respect to a circle

\[MA \times MB = MT^2 = MO^2 - OT^2 \]

\begin{tikzpicture}
\pgfmathsetmacro{\r}{2} \\
\pgfmathsetmacro{\xO}{6} \\
\pgfmathsetmacro{\xE}{\xO-\r} \\
\tkzDefPoints{0/0/M,\xO/0/O,\xE/0/E}
\tkzDefCircle[diameter](M,O) \\
\tkzGetPoint{I} \\
\tkzInterCC(I,O)(O,E) \tkzGetPoints{T}{T'} \\
\tkzDefShiftPoint[O](45:2){B} \\
\tkzInterLC(M,B)(O,E) \tkzGetPoints{A}{B} \\
\tkzDrawCircle(O,E) \\
\tkzDrawSemiCircle[dashed](I,O) \\
\tkzDrawLine(M,O) \\
\tkzDrawLines(M,T,O,T,M,B) \\
\tkzDrawPoints(A,B,T) \\
\tkzLabelPoints[above](A,B,O,M,T)
\end{tikzpicture}
45.19. Radical axis of two non-concentric circles

From Wikipedia: In geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. The notation radical axis was used by the French mathematician M. Chasles as axe radical.
45. Some interesting examples

45.20. External homothetic center

From Wikipedia: Given two nonconcentric circles, draw radii parallel and in the same direction. Then the line joining the extremities of the radii passes through a fixed point on the line of centers which divides that line externally in the ratio of radii. This point is called the external homothetic center, or external center of similitude (Johnson 1929, pp. 19-20 and 41).

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B,2/3/K}
\tkzDefCircle[R](A,1) \tkzGetPoint{a}
\tkzDefCircle[R](B,2) \tkzGetPoint{b}
\tkzDrawCircles(A,a B,b)
\tkzDrawLine(A,B)
\tkzDefShiftPoint[A](60:1){M}
\tkzDefShiftPoint[B](60:2){M'}
\tkzInterLL(A,B)(M,M') \tkzGetPoint{O}
\tkzDefLine[tangent from = O](B,M') \tkzGetPoints{X}{T'}
\tkzDefLine[tangent from = O](A,M) \tkzGetPoints{X}{T}
\tkzDrawPoints(A,B,O,T,T',M,M')
\tkzDrawLines[new](O,B O,T' O,M')
\tkzDrawSegments[new](A,M B,M')
\tkzLabelPoints(A,B,O,T,T',M,M')
\end{tikzpicture}
45.21. Tangent lines to two circles

For two circles, there are generally four distinct lines that are tangent to both if the two circles are outside each other. For two of these, the external tangent lines, the circles fall on the same side of the line; the external tangent lines intersect in the external homothetic center.

\begin{tikzpicture}
 \pgfmathsetmacro{\r}{1} %
 \pgfmathsetmacro{\R}{2} %
 \pgfmathsetmacro{\rt}{\R-\r} %
 \tkzDefPoints{0/0/A,4/2/B,2/3/K}
 \tkzDefMidPoint(A,B) \tkzGetPoint{I}
 \tkzInterLC[R](A,B)(B,\rt) \tkzGetPoints{E}{F}
 \tkzInterCC(I,B)(B,F) \tkzGetPoints{a}{a'}
 \tkzInterLC[R](B,a)(B,\R) \tkzGetPoints{X'}{T'}
 \tkzDefLine[tangent at=T'](B) \tkzGetPoint{h}
 \tkzInterLL(T',h)(A,B) \tkzGetPoint{O}
 \tkzInterLC[R](O,T')(A,\r) \tkzGetPoints{T}{T'}
 \tkzDefCircle[R](A,\r) \tkzGetPoint{a}
 \tkzDefCircle[R](B,\R) \tkzGetPoint{b}
 \tkzDefCircle[R](B,\rt) \tkzGetPoint{c}
 \tkzDrawCircles(A,a)
 \tkzDrawCircle[orange][R](B,b,B,c)
 \tkzDrawCircle[orange,dashed][I,B]
 \tkzDrawPoints(O,A,B,a,a',E,F,T',T)
 \tkzDrawLines(O,B,A,a,B,T' A,T)
 \tkzDrawLines[add= 1 and 8](T',h)
 \tkzLabelPoints(O,A,B,a,a',E,F,T,T')
\end{tikzpicture}
45.22. Tangent lines to two circles with radical axis

As soon as two circles are not concentric, we can construct their radical axis, the set of points of equal power with respect to the two circles. We know that the radical axis is a line orthogonal to the line of the centers. Note that if we specify P and Q as the points of contact of one of the common exterior tangents with the two circles and D and E as the points of the circles outside $[AB]$, then (DP) and (EQ) intersect on the radical axis of the two circles. We will show that this property is always true and that it allows us to construct common tangents, even when the circles have the same radius.
45. Some interesting examples

\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B,2/3/K}
\tkzDefCircle[R](A,1) \tkzGetPoint{a}
\tkzDefCircle[R](B,3) \tkzGetPoint{b}
\tkzInterCC[R](A,1)(K,3) \tkzGetPoints{a}{a'}
\tkzInterCC[R](B,3)(K,3) \tkzGetPoints{b}{b'}
\tkzInterLL(a,a')(b,b') \tkzGetPoint{X}
\tkzDefPointBy[projection= onto A--B](X) \tkzGetPoint{H}
\tkzGetPoint{C}
\tkzInterLC[R](A,B)(B,3) \tkzGetPoints{b1}{E}
\tkzInterLC[R](A,B)(A,1) \tkzGetPoints{D}{a2}
\tkzDefMidPoint(D,E) \tkzGetPoint{I}
\tkzDrawCircle[orange](I,D)
\tkzInterLC(X,H)(I,D) \tkzGetPoints{M}{M'}
\tkzInterLC(M,D)(A,D) \tkzGetPoints{P}{P'}
\tkzInterLC(M,E)(B,E) \tkzGetPoints{Q}{Q'}
\tkzInterLL(P,Q)(A,B) \tkzGetPoint{O}
\tkzDrawCircles(A,a,B,b)
\tkzDrawSegments[orange](A,P I,M B,Q)
\tkzDrawPoints(A,B,D,E,M,I,O,P,Q,X,H)
\tkzDrawLines(O,E M,D M,E O,Q)
\tkzDrawLine[add= 3 and 4,orange](X,H)
\tkzLabelPoints(A,B,D,E,M,I,O,P,Q,X,H)
\end{tikzpicture}
45.23. Middle of a segment with a compass

This example involves determining the middle of a segment, using only a compass.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefRandPointOn\[circle= center A radius 4\] \tkzGetPoint{B}
\tkzDefPointBy\[rotation= center A angle 180\](B) \tkzGetPoint{C}
\tkzInterCC(A,B)(B,A) \tkzGetPoints{I}{I'}
\tkzInterCC(A,I)(I,A) \tkzGetPoints{J}{J'}
\tkzInterCC(B,A)(C,B) \tkzGetPoints{D}{E}
\tkzInterCC(D,B)(E,B) \tkzGetPoints{M}{M'}
\tkzSetUpArc\[color=orange,style=solid,delta=10\]
\tkzDrawArc(C,D)(E)
\tkzDrawArc(B,E)(D)
\tkzDrawCircle\[color=teal,line width=.2pt\](A,B)
\tkzDrawArc(D,B)(M)
\tkzDrawArc(E,M)(B)
\tkzCompasss\[color=orange,style=solid\](B,I J J,C)
\tkzDrawPoints(A,B,C,D,E,M)
\tkzLabelPoints(A,B,M)
\end{tikzpicture}
45.24. Definition of a circle _Apollonius_

From Wikipedia: Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. ... The solutions to this problem are sometimes called the circles of Apollonius.

Explanation

A circle is the set of points in a plane that are equidistant from a given point O. The distance r from the center is called the radius, and the point O is called the center. It is the simplest definition but it is not the only one.

Apollonius of Perga gives another definition: The set of all points whose distances from two fixed points are in a constant ratio is a circle.

With **tkz-euclide** is easy to show you the last definition.

```
\begin{tikzpicture}[scale=1.5]
  % Firstly we defined two fixed point.
  % The figure depends of these points and the ratio K
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(4,0){B}
  % tkz-euclide.sty knows about the apollonius's circle
  % with K=2 we search some points like I such as IA=2 x IB
  \tkzDefCircle[apollonius,K=2](A,B) \tkzGetPoints{K1}{k}
  \tkzDefPointOnCircle[through= center K1 angle 30 point k]{I}
  \tkzDefPointOnCircle[through= center K1 angle 280 point k]{J}
  \tkzDrawSegments[new](A,I I,B A,J J,B)
  \tkzDrawCircle[color = teal,fill=teal!20,opacity=.4](K1,k)
  \tkzDrawPoints(A,B,K1,I,J)
  \tkzDrawCircle(A,B)
  \tkzLabelPoints[below,font=\scriptsize](A,B,K1,I,J)
\end{tikzpicture}
```
45. Some interesting examples

45.25. Application of Inversion: Pappus chain

From Wikipedia In geometry, the Pappus chain is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.

\begin{tikzpicture}[ultra thin]
\pgfmathsetmacro{\xB}{6}\
\pgfmathsetmacro{\xC}{9}\
\pgfmathsetmacro{\xD}{(\xC*\xC)/\xB}\
\pgfmathsetmacro{\xJ}{(\xC+\xD)/2}\
\pgfmathsetmacro{\r}{\xD-\xJ}\
\pgfmathsetmacro{\nc}{16}\
\tkzDefPoints{0/0/A,\xB/0/B,\xC/0/C,\xD/0/D}\
\tkzDefCircle[diameter](A,C) \tkzGetPoint{x}\
\tkzDefCircle[diameter](A,B) \tkzGetPoint{y}\
\foreach \i in {-\nc,...,0,...,\nc} {\
 \tkzDefPoint(\xJ,2*\r*\i){J}\
 \tkzDefPoint(\xJ,2*\r*\i-\r){H}\
 \tkzDefCircleBy[inversion = center A through C](J,H)\
 \tkzDrawCircle[fill=teal](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}
45.26. Book of lemmas proposition 1 Archimedes

If two circles touch at A, and if [CD], [EF] be parallel diameters in them, A, C and E are aligned.

(CD) ∥ (EF) (AO₁) is secant to these two lines so A₀₂C = A₀₁E.

Since the triangles AO₂C and AO₁E are isosceles the angles at the base are equal \(\widehat{AC}_0 = \widehat{AE}_0 = \widehat{CA}_0 \). Thus A, C and E are aligned.

45.27. Book of lemmas proposition 6 Archimedes

Let AC, the diameter of a semicircle, be divided at B so that AC/AB = \(\phi \) or in any ratio. Describe semicircles within the first semicircle and on AB, BC as diameters, and suppose a circle drawn touching the all three semicircles. If GH be the diameter of this circle, to find relation between GH and AC.
\begin{tikzpicture}
\tkzDefPoints{0/0/A,12/0/C}
\tkzDefGoldenRatio(A,C) \tkzGetPoint{B}
\tkzDefMidPoint(A,C) \tkzGetPoint{O}
\tkzDefMidPoint(A,B) \tkzGetPoint{O_1}
\tkzDefMidPoint(B,C) \tkzGetPoint{O_2}
\tkzDefExtSimilitudeCenter(O_1,A)(O_2,B) \tkzGetPoint{M_0}
\tkzDefIntSimilitudeCenter(O,A)(O_1,A) \tkzGetPoint{M_1}
\tkzDefIntSimilitudeCenter(O,C)(O_2,C) \tkzGetPoint{M_2}
\tkzInterCC(O_1,A)(M_2,C) \tkzGetFirstPoint{E}
\tkzInterCC(O_2,C)(M_1,A) \tkzGetSecondPoint{F}
\tkzInterCC(O,A)(M_0,B) \tkzGetFirstPoint{D}
\tkzInterLL(O_1,E)(O_2,F) \tkzGetPoint{O_3}
\tkzDefCircle[circum](E,F,B) \tkzGetPoint{0_4}
\tkzInterLC(A,D)(O_1,A) \tkzGetFirstPoint{I}
\tkzInterLC(C,D)(O_2,B) \tkzGetSecondPoint{K}
\tkzInterLC[common=D](A,D)(O_3,D) \tkzGetFirstPoint{G}
\tkzInterLC[common=D](C,D)(O_3,D) \tkzGetSecondPoint{H}
\tkzInterLL(A,H)(B,I) \tkzGetPoint{L}
\tkzInterLL(L,G)(A,C) \tkzGetPoint{N}
\tkzInterLL(M,H)(A,C) \tkzGetPoint{P}
\tkzDrawCircles[red,thin](O_3,F)
\tkzDrawCircles[new,thin](0_4,B)
\tkzDrawSemiCircles[teal](O,C O_1,B O_2,C)
\tkzDrawSemiCircles[green](M_2,C)
\tkzDrawSemiCircles[green,swap](M_1,A)
\tkzDrawSegments[red](A,C)
\tkzDrawSegments[new](0_1,0_3 O_2,0_3)
\tkzDrawSegments[new,very thin](B,H,C,G,A,H,N,H,P)
\tkzDrawSemiCircles[green,very thin](B,D A,D,C,D,G,H,I,B,K,B,G)
\tkzDrawPoints(A,B,C,M_1,M_2,E,0_3,F,D,0_4,0_1,0_2,I,K,G,H,L,P,N,M)
\tkzLabelPoints[font=\scriptsize](A,B,C,M_1,M_2,F,0_1,0_2,I,K,G,H,L,M,N)
\tkzLabelPoints[font=\scriptsize,right](E,0_3,D,0_4,P)
\end{tikzpicture}
Let GH be the diameter of the circle which is parallel to AC, and let the circle touch the semicircles on AC, AB, BC in D, E, F respectively.

Then, by Prop. 1 A, G and D are aligned, ainsi que D, H and C.

For a like reason A E and H are aligned, C F and G are aligned, as also are B E and G, B F and H.

Let (AD) meet the semicircle on [AC] at I, and let (BD) meet the semicircle on [BC] in K. Join CI, CK meeting AE, BF in L, M, and let GL, HM produced meet AB in N, P respectively.

Now, in the triangle AGB, the perpendiculars from A, C on the opposite sides meet in L. Therefore by the properties of triangles, (GN) is perpendicular to (AC). Similarly (HP) is perpendicular to (BC).

Again, since the angles at I, K, D are right, (CK) is parallel to (AD), and (CI) to (BD).

Therefore

\[
\frac{AB}{BC} = \frac{AL}{LH} = \frac{AN}{NP} \quad \text{and} \quad \frac{BC}{AB} = \frac{CM}{MG} = \frac{PC}{NP}
\]

hence

\[
\frac{AN}{NP} = \frac{NP}{PC} \quad \text{so} \quad NP^2 = AN \times PC
\]

Now suppose that B divides [AC] according to the divine proportion that is:

\[
\phi = \frac{AB}{BC} = \frac{AC}{AB} \quad \text{then} \quad AN = \phi NP \quad \text{and} \quad NP = \phi PC
\]

We have

\[
AC = AN + NP + PC \quad \text{either} \quad AB + BC = AN + NP + PC \quad \text{or} \quad (\phi + 1)BC = AN + NP + PC
\]

we get

\[
(\phi + 1)BC = \phi NP + NP + PC = (\phi + 1)NP + PC = \phi(\phi + 1)PC + PC = \phi^2 + \phi + 1)PC
\]
as

\[\phi^2 = \phi + 1 \quad \text{then} \quad (\phi + 1)BC = 2(\phi + 1)PC \quad \text{i.e.} \quad BC = 2PC \]

That is, p is the middle of the segment BC.

Part of the proof from https://www.cut-the-knot.org

45.28. "The" Circle of APOLLONIUS

The circle which touches all three excircles of a triangle and encompasses them is often known as "the" Apollonius circle (Kimberling 1998, p. 102)

Explanation

The purpose of the first examples was to show the simplicity with which we could recreate these propositions. With TikZ you need to do calculations and use trigonometry while with tkz-euclide you only need to build simple objects.

But don't forget that behind or far above tkz-euclide there is TikZ. I'm only creating an interface between TikZ and the user of my package.

The last example is very complex and it is to show you all that we can do with tkz-euclide.
45. Some interesting examples
Some interesting examples
Part X.

FAQ
46. FAQ

46.1. Most common errors

For the moment, I’m basing myself on my own, because having changed syntax several times, I’ve made a number of mistakes. This section is going to be expanded. With version 4.05 new problems may appear.

- The mistake I make most often is to forget to put an "s" in the macro used to draw more than one object: like \tkzDrawSegment(s) or \tkzDrawCircle(s) ok like in this example \tkzDrawPoint(A,B) when you need \tkzDrawPoints(A,B);

- Don’t forget that since version 4 the unit is obligatorily the “cm” it is thus necessary to withdraw the unit like here \tkzDrawCircle[R](0,3cm) which becomes \tkzDrawCircle[R](0,3). The traditional options of TikZ keep their units example below right = 12pt on the other hand one will write size=1.2 to position an arc in \tkzMarkAngle;

- The following error still happens to me from time to time. A point that is created has its name in brackets while a point that is used either as an option or as a parameter has its name in braces. Example \tkzGetPoint(A) When defining an object, use braces and not brackets, so write: \tkzGetPoint{A};

- The changes in obtaining the points of intersection between lines and circles sometimes exchange the solutions, this leads either to a bad figure or to an error.

- \tkzGetPoint{A} in place of \tkzGetFirstPoint{A}. When a macro gives two points as results, either we retrieve these points using \tkzGetPoints{A}{B}, or we retrieve only one of the two points, using \tkzGetFirstPoint{A} or \tkzGetSecondPoint{A}. These two points can be used with the reference \tkzFirstPointResult or \tkzSecondPointResult. It is possible that a third point is given as \tkzPointResult;

- Mixing options and arguments; all macros that use a circle need to know the radius of the circle. If the radius is given by a measure then the option includes a R.

- The angles are given in degrees, more rarely in radians.

- If an error occurs in a calculation when passing parameters, then it is better to make these calculations before calling the macro.

- Do not mix the syntax of \texttt{pgfmath} and \texttt{xfp}. I’ve often chosen \texttt{xfp} but if you prefer \texttt{pgfmath} then do your calculations before passing parameters.

- Error "dimension too large" : In some cases, this error occurs. One way to avoid it is to use the "\texttt{xfp}" option. When this option is used in an scope, the "veclen" function is replaced by a function dependent on "xfp". Do not use intersection macros in this scope. For example, an error occurs if you use the macro \tkzDrawArc with too small an angle. The error is produced by the \texttt{decoration} library when you want to place a mark on an arc. Even if the mark is absent, the error is still present.
Index

\add, 125
\ang, 117
\Ax, 181
\Ay, 181

\coordinate, 34
\dAB, 179, 180
\Delta, 168
\draw (A)--(B);, 126
\endpgfinterruptboundingbox, 154

Environment
 scope, 36, 190
 tikzpicture, 190
 tikzspicture, 190

\foreach, 109
\fpeval, 111

\iftkzFlagCC, 112
\iftkzFlagLC, 106

\len, 180, 181

Operating System
 Windows, 18

Package
 \fp, 17
 \pgfmath, 245
 tkz-euclide, 147
 \xfp, 17, 18, 34, 36, 179, 245
\endpgfinterruptboundingbox, 154
\pgflinewidth, 123, 124
\pgfmathsetmacro, 111
\pgfresetboundingbox, 147
\px, 181
\py, 181
\rAB, 41
\rAp, 50

standalone, 23

TeX Distributions
 \MiKTeX, 18
 \TeXLive, 18

TikZ Library
 angles, 17
 babel, 28
 decoration, 245
 quotes, 17
\tikzset, 189
\tkzAngleResult, 117, 119
\tkzAutoLabelPoints, 166
\tkzCalcLength, 179, 180
\tkzCalcLength: arguments
\tkzCalcLength: options
\cm, 180
\tkzCalcLength\[\langle local\ options\ \rangle\](\langle pt1,pt2 \rangle), 179
\tkzCentroid, 43
\tkzClip, 17, 28, 147, 148
\tkzClip: options
\space, 148
\tkzClipBB, 17, 149, 150
\tkzClipCircle[\texttt{out}], 155
\tkzClipCircle, 96, 152
\tkzClipCircle: arguments
\((A,B)\), 152
\tkzClipCircle: options
\texttt{out}, 152
\tkzClipCircle[\langle local\ options\ \rangle]\((A,B)\), 152
\tkzClipPolygon[\texttt{out}], 151, 155
\tkzClipPolygon, 151
\tkzClipPolygon: arguments
\((\texttt{pt1,pt2,pt3},…)\), 151
\tkzClipPolygon: options
\texttt{out}, 151
\tkzClipPolygon[\langle local\ options\ \rangle]\((\texttt{points\ list})\), 151
\tkzClipSector(O,A)(B), 153
\tkzClipSector[R](O,2)(30,90), 153
\tkzClipSector[\texttt{rotate}](O,A)(90), 153
\tkzClipSector, 153
\tkzClipSector: options
\texttt{R}, 153
\tkzClipSector[\langle local\ options\ \rangle]\((O,…)\)((…)), 153
\tkzClip[\langle local\ options\ \rangle], 148
\tkzcmtopt, 181
\tkzcmtopt: arguments
\texttt{number}\{\texttt{name of macro}\}, 181
\tkzcmtopt[\langle number\ \rangle]{\langle name of macro\ \rangle}, 181
\tkzCompass, 138, 173
\tkzCompass: options
\texttt{delta}, 173
\texttt{length}, 173
\tkzCompasses, 173, 174
\tkzCompasses: options
\texttt{delta}, 173
\texttt{length}, 173
\tkzCompasses[\langle local\ options\ \rangle]\((\texttt{pt1,pt2\ pt3,pt4},…)\), 173
\tkzCompass[\langle local\ options\ \rangle]\((A,B)\), 173
\tkzDefBarycentricPoint, 42, 44
\tkzDefBarycentricPoint: arguments
\((\texttt{pt1}=\alpha_1,\texttt{pt2}=\alpha_2,…)\), 42
\tkzDefBarycentricPoint[\langle initial\ pt1=\alpha_1,\texttt{pt2}=\alpha_2,…\ \rangle], 42
\tkzDefCircle[\texttt{radius}](A,B), 180
\tkzDefCircle, 96
\tkzDefCircle: arguments
\((\texttt{pt1,pt2})\) or \((\texttt{pt1,pt2,pt3})\), 96
\tkzDefCircle: options
\texttt{K}, 96
\texttt{R}, 96

\tkz-euclide AlterMundus
Index

apollonius, 96
circum, 96
diameter, 96
euler or nine, 96
ex, 96
in, 96
orthogonal from, 96
orthogonal through, 96
spieker, 96
\tkzDefCircleBy, 16, 103
\tkzDefCircleBy: arguments
pt1, pt2, 103
\tkzDefCircleBy: options
 homothety, 103
 inversion, 103
 projection, 103
 reflection, 103
 rotation, 103
 symmetry, 103
 translation, 103
\tkzDefCircleBy[[local options]]((pt1, pt2), 103
\tkzDefCirclesBy, 103
\tkzDefCircle[[local options]]((A, B) or ((A, B, C), 96
\tkzDefEquiPoints, 47
\tkzDefEquiPoints: arguments
 (pt1, pt2), 47
\tkzDefEquiPoints: options
 /compass/delta, 47
 dist, 47
 from=pt, 47
 show, 47
\tkzDefEquiPoints[[local options]]((pt1, pt2), 47
\tkzDefExtSimilitudeCenter, 43
\tkzDefGoldenRatio(A, C), 42
\tkzDefGoldenRatio, 41, 42
\tkzDefGoldenRatio: arguments
 (pt1, pt2), 42
\tkzDefGoldenRatio((pt1, pt2), 42
\tkzDefGoldenRectangle, 93
\tkzDefGoldenRectangle: arguments
 ((pt1, pt2), 93
\tkzDefGoldRectangle, 93
\tkzDefHarmonic, 46
\tkzDefHarmonic: options
 both, 46
 ext, 46
 int, 46
\tkzDefHarmonic[[options]]((pt1, pt2, pt3) or ((pt1, pt2), 46
\tkzDefIntSimilitudeCenter, 43
\tkzDefLine, 72
\tkzDefLine: arguments
 ((pt1, pt2, pt3), 72
 ((pt1, pt2), 72
 (pt1), 72
\tkzDefLine: options
 K, 73
 altitude, 73

\textit{tkz-euclide} AlterMundus
bisector out, 73
bisector, 73
euler, 73
mediator, 73
normed, 73
orthogonal=through..., 73
parallel=through..., 73
perpendicular=through..., 73
symmedian, 73
tangent at, 73
tangent from, 73
\tkzDefLine[⟨local options⟩](⟨pt1,pt2⟩) or (⟨pt1,pt2,pt3⟩), 72
\tkzDefMidArc, 47
\tkzDefMidArc: arguments
pt1,pt2,pt3, 47
\tkzDefMidArc(⟨pt1,pt2,pt3⟩), 47
\tkzDefMidPoint, 21, 41
\tkzDefMidPoint: arguments
⟨pt1,pt2⟩, 41
\tkzDefMidPoint(⟨pt1,pt2⟩), 41
\tkzDefParallelogram, 93
\tkzDefParallelogram: arguments
(⟨pt1,pt2,pt3⟩), 93
\tkzDefParallelogram(⟨pt1,pt2,pt3⟩), 93
\tkzDefPoint, 34, 35, 41, 106, 117
\tkzDefPoint: arguments
(α:d), 35
(x,y), 35
{ref}, 35
\tkzDefPoint: options
label, 35
shift, 35
\tkzDefPointBy[rotation = …], 117
\tkzDefPointBy, 58
\tkzDefPointBy: arguments
pt, 58
\tkzDefPointBy: options
homothety, 58
inversion negative, 58
inversion, 58
projection, 58
reflection, 58
rotation in rad, 58
rotation with nodes, 58
rotation, 58
symmetry, 58
translation, 58
\tkzDefPointBy[⟨local options⟩](⟨pt⟩), 58
\tkzDefPointOnCircle, 15, 50, 51
\tkzDefPointOnCircle: options
R in rad, 50
R, 50
through in rad, 50
through, 50
\tkzDefPointOnCircle[⟨local options⟩], 50
\tkzDefPointOnLine, 49
\tkzDefPointOnLine: arguments
pt1,pt2, 49
\tkzDefPointOnLine: options
\tkzDefPointOnLine[(local options)]{(A,B)}, 49
\tkzDefPoints(0/0/2/2/A), 36
\tkzDefPoints, 34, 38
\tkzDefPoints: arguments
x_i/y_i/r_i, 38
\tkzDefPoints: options
shift, 38
\tkzDefPointsBy, 58, 66
\tkzDefPointsBy: arguments
\tkzDefPointsBy: options
homothety = center #1 ratio #2, 66
inversion = center #1 through #2, 66
inversion negative = center #1 through #2, 66
projection = onto #1--#2, 66
reflection = over #1--#2, 66
rotation = center #1 angle #2, 66
rotation in rad = center #1 angle #2, 66
rotation with nodes = center #1 from #2 to #3, 66
symmetry = center #1, 66
translation = from #1 to #2, 66
\tkzDefPointsBy[(local options)]{(list of points)}{(list of points)}, 66
\tkzDefPoints[(local options)]{(x_1/y_1/r_1, x_2/y_2/r_2, ...)}, 38
\tkzDefPointWith, 67
\tkzDefPointWith: arguments
(pt1, pt2), 67
\tkzDefPointWith: options
K, 67
colinear normed= at #1, 67
colinear= at #1, 67
linear normed, 67
linear, 67
orthogonal normed, 67
orthogonal, 67
\tkzDefPointWith[(pt1, pt2)], 67
\tkzDefPoint[(local options)]{(x,y)}{(ref)} or \{α:d\}{(ref)}, 35
\tkzDefProjExcenter[name=J](A,B,C)(a,b,c){Y,Z,X}, 100
\tkzDefProjExcenter, 100
\tkzDefProjExcenter: arguments
(pt1=α_1, pt2=α_2, ...), 100
\tkzDefProjExcenter: options
name, 100
\tkzDefProjExcenter[(local options)]{(A,B,C)}{(a,b,c)}{(X,Y,Z)}, 100
\tkzDefRadicalAxis, 184
\tkzDefRadicalAxis: arguments
(pt1, pt2)(pt3, pt4), 184
\tkzDefRadicalAxis((pt1, pt2))(pt3, pt4), 184
\tkzDefRandPointOn, 17, 121
\tkzDefRandPointOn: options
circle =center pt1 radius dim, 121
circle through=center pt1 through pt2, 121
disk through=center pt1 through pt2, 121
line=pt1--pt2, 121
rectangle=pt1 and pt2, 121
segment= pt1--pt2, 121
\tkzDefRandPointOn[(local options)], 121
\tkzDefRectangle, 92
\tkzDefRectangle: arguments (\pt1,\pt2), 92
\tkzDefRectangle(\pt1,\pt2), 92
\tkzDefRegPolygon, 94
\tkzDefRegPolygon: arguments (\pt1,\pt2), 94
\tkzDefRegPolygon: options
 Options TikZ, 94
center, 94
name, 94
side, 94
\tkzDefRegPolygon[\{local options\}](\pt1,\pt2), 94
\tkzDefShiftPoint, 36, 37
\tkzDefShiftPoint: arguments
 (\alpha: d), 37
 (x, y), 37
 \{ref\}, 37
\tkzDefShiftPoint: options
 \[pt\], 37
\tkzDefShiftPoint[\{Point\}](x, y){\{ref\}} or ((\alpha: d){\{ref\}}, 37
\tkzDefSimilitudeCenter, 43
\tkzDefSimilitudeCenter: arguments
 ((\pt1,\pt2)(\pt3,\pt4), 43
 ((\pt1,\r1)(\pt2,\r2), 43
\tkzDefSimilitudeCenter: options
 R, 43
 ext, 43
 int, 43
 node, 43
\tkzDefSimilitudeCenter[\{options\}](O, A)(O', B) or ((O, \r) (O', \r'), 43
\tkzDefSpcTriangle[medial,name=M_](A,B,C){A,B,C}, 83
\tkzDefSpcTriangle[medial,name=M](A,B,C){A_B_C}, 83
\tkzDefSpcTriangle[medial](A,B,C){a,b,c}, 83
\tkzDefSpcTriangle, 83
\tkzDefSpcTriangle: options
 centroid or medial, 83
euler, 83
 ex or excentral, 83
extouch, 83
feuerbach, 83
in or incentral, 83
intouch or contact, 83
name, 83
orthic, 83
symmedial, 83
tangential, 83
\tkzDefSpcTriangle[\{local options\}](p1,p2,p3){r1,r2,r3}, 83
\tkzDefSquare, 91, 92
\tkzDefSquare: arguments
 ((\pt1,\pt2), 91
\tkzDefSquare(\pt1,\pt2), 91
\tkzDefTriangle, 17, 18, 78, 79
\tkzDefTriangle: options
 cheops, 79
egyptian, 79
equilateral, 79
euclid, 79
golden, 79
gold, 79
half, 79
isosceles right, 79
pythagoras, 79
pythagore, 79
school, 79
sublime, 79
swap, 79
two angles= #1 and #2, 79
\tkzDefTriangleCenter[ortho](B,C,A), 52
\tkzDefTriangleCenter, 52
\tkzDefTriangleCenter: arguments
(pt1,pt2,pt3), 52
\tkzDefTriangleCenter: options
centroid, 52
circum, 52
euler, 52
ex, 52
feuerbach, 52
gergeronne, 52
grebe, 52
in, 52
tmoine, 52
median, 52
mittenpunkt, 52
nagel, 52
ortho, 52
orth, 52
spieker, 52
symmedian, 52
\tkzDefTriangleCenter[(local options)](A,B,C), 52
\tkzDefTriangle[(local options)]((A,B), 79
\tkzDotProduct, 182
\tkzDotProduct((pt1,pt2,pt3), 182
\tkzDrawArc[angles](O,A)(0,90), 136
\tkzDrawArc[delta=180](O,A)(B), 136
\tkzDrawArc[R with nodes](0,2)(A,B), 136
\tkzDrawArc[R](O,2)(30,90), 136
\tkzDrawArc[rotate,color=red](O,A)(90), 136
\tkzDrawArc, 117, 136, 245
\tkzDrawArc: options
R with nodes, 136
R, 136
angles, 136
delta, 136
reverse, 136
rotate, 136
towards, 136
\tkzDrawArc[(local options)](0,...)(...), 136
\tkzDrawCircle(s), 245
\tkzDrawCircle[R](O,3), 245
\tkzDrawCircle[R](O,3cm), 245
\tkzDrawCircle, 96, 131, 141
\tkzDrawCircle: arguments
 \langle pt1,pt2 \rangle, 131
\tkzDrawCircles, 132
\tkzDrawCircles: arguments
 \langle pt1,pt2 pt3,pt4 \ldots \rangle, 132
\tkzDrawCircles: options through, 132
\tkzDrawCircles[\langle local options \rangle] \langle A,B,C,D \ldots \rangle, 132
\tkzDrawCircle[\langle local options \rangle] \langle A,B \rangle, 131
\tkzDrawLine, 125
\tkzDrawLine: options
 TikZ options, 125
 \ldots, 125
\tkzDrawLines, 125
\tkzDrawLines[\langle local options \rangle] \langle pt1,pt2 pt3,pt4 \ldots \rangle, 125
\tkzDrawLine[\langle local options \rangle] \langle pt1,pt2 \rangle, 125
\tkzDrawPoint(A,B), 245
\tkzDrawPoint, 123
\tkzDrawPoint: arguments
 \text{name of point}, 123
\tkzDrawPoint[\langle local options \rangle] \langle name \rangle, 123
\tkzDrawPoints, 123, 124
\tkzDrawPoints: arguments
 \text{points list}, 124
\tkzDrawPoints[\langle local options \rangle] \langle liste \rangle, 124
\tkzDrawPoint[\langle local options \rangle] \langle name \rangle, 123
\tkzDrawPolygon, 129
\tkzDrawPolygon: arguments
 \langle (pt1,pt2,pt3,\ldots) \rangle, 129
\tkzDrawPolygon[\langle local options \rangle] \langle (pt1,pt2,pt3,\ldots) \rangle, 129
\tkzDrawPolySeg, 130
\tkzDrawPolySeg: arguments
 \langle (pt1,pt2,pt3,\ldots) \rangle, 130
\tkzDrawPolySeg[\langle local options \rangle] \langle (points list) \rangle, 130
\tkzDrawPolySeg: options
 \text{TikZ Options}, 130
\tkzDrawPolySeg[\langle local options \rangle] \langle (points list) \rangle, 130
\tkzDrawSector, 139–141
\tkzDrawSector: options
 \text{R with nodes}, 139
 \text{R}, 139
Index

rotate, 139
towards, 139
\tkzDrawSector[local options](0,\ldots)(\ldots), 139
\tkzDrawSegment(s), 245
\tkzDrawSegment, 125, 126
\tkzDrawSegment: arguments
 (pt1,pt2), 126
\tkzDrawSegment: options
 TikZ options, 126
 dim, 126
\tkzDrawSegments, 128
\tkzDrawSegments[(local options)](pt1,pt2 pt3,pt4 \ldots), 128
\tkzDrawSegment[(local options)](pt1,pt2), 126
\tkzDrawSemiCircle, 135
\tkzDrawSemiCircle: arguments
 (pt1,pt2), 135
\tkzDrawSemiCircles, 18, 135, 136
\tkzDrawSemiCircles: arguments
 (pt1,pt2 pt3,pt4 \ldots), 135
\tkzDrawSemiCircles[(local options)](A,B C,D \ldots), 135
\tkzDrawTriangles, 18
\tkzDuplicateLen, 178
\tkzDuplicateLength, 178
\tkzDuplicateSegment, 178, 179
\tkzDuplicateSegment: arguments
 (pt1,pt2)(pt3,pt4){pt5}, 178
\tkzDuplicateSegment[(local options)](pt1,pt2)(pt3,pt4){pt5}, 178
\tkzFillAngle, 145, 146, 201
\tkzFillAngle: options
 size, 146
\tkzFillAngles, 146
\tkzFillAngles[(local options)](A,O,B)(A',O',B')etc., 146
\tkzFillAngle[(local options)](A,O,B), 146
\tkzFillCircle, 96, 141
\tkzFillCircle: options
 R, 141
 radius, 141
 \tkzFillCircle[(local options)](A,B), 141
\tkzFillPolygon, 144
\tkzFillPolygon: arguments
 (pt1,pt2,\ldots), 144
\tkzFillPolygon[(local options)](points list), 144
\tkzFillSector(0,A)(B), 145
\tkzFillSector[R with nodes](0,2)(A,B), 145
\tkzFillSector[R,color=blue](0,2)(30,90), 145
\tkzFillSector[rotate,color=red](0,A)(90), 145
\tkzFillSector, 140, 144, 145
\tkzFillSector: options
 R with nodes, 145
 R, 145
 rotate, 145
 towards, 145
\tkzFillSector[(local options)](0,\ldots)(\ldots), 145
\tkzFindAngle, 117
\tkzFindAngle: arguments
 (pt1,pt2,pt3), 117
\tkzFindAngle({pt1,pt2,pt3}), 117
\tkzFindSlopeAngle, 119, 120
\tkzFindSlopeAngle: arguments (pt1,pt2), 119
\tkzFindSlopeAngle((A,B)), 119
\tkzGetAngle, 117–119
\tkzGetAngle: arguments name of macro, 117
\tkzGetAngle((name of macro)), 117
\tkzGetFirstPoint(A), 245
\tkzGetFirstPoint(Jb), 99
\tkzGetFirstPoint(M), 40
\tkzGetFirstPoint, 40, 91
\tkzGetFirstPoint: arguments ref1, 40
\tkzGetFirstPoint((ref1)), 40
\tkzGetLength(dAB), 179, 180
\tkzGetLength, 41, 96, 179, 180
\tkzGetLength: arguments name of a macro, 41
\tkzGetLength((name of a macro)), 41
\tkzGetPoint(A), 245
\tkzGetPoint(A), 245
\tkzGetPoint(C), 67
\tkzGetPoint(M), 40
\tkzGetPoint(M), 58
\tkzGetPoint, 17, 21, 40–42, 52–54, 67, 72, 79, 93, 96, 97, 121
\tkzGetPoint: arguments ref, 40
\tkzGetPointCoord, 181
\tkzGetPointCoord: arguments (point){name of macro}, 181
\tkzGetPointCoord((A)){(name of macro)}, 181
\tkzGetPoints(A){B}, 245
\tkzGetPoints(M,N), 40
\tkzGetPoints(O'){M'}, 103
\tkzGetPoints(z1){z2}, 102
\tkzGetPoints, 40, 72, 91–93, 96, 103
\tkzGetPoints: arguments (ref1,ref2), 40
\tkzGetPoints((ref1))((ref2)), 40
\tkzGetPoint((ref)), 40
\tkzGetRandPointOn, 17, 120
\tkzGetResult, 182
\tkzGetSecondPoint(A), 245
\tkzGetSecondPoint(M), 41
\tkzGetSecondPoint(Tb), 99
\tkzGetSecondPoint, 41, 91
\tkzGetSecondPoint: arguments ref2, 41
\tkzGetSecondPoint((ref2)), 41
\tkzGetVectxy, 72
\tkzGetVectxy: arguments (point){name of macro}, 72
\tkzGetVectxy((A,B)){(text)}, 72
\tkzInit, 17, 23, 28, 147, 148
\tkzInit: options xmax, 148
\tkzInit[,148] \tkzInterCC,40,112 \tkzInterCC: options
N, 112
R, 112
common=pt, 112
with nodes, 112
\tkzInterCC[(options)]((O,A))((O',A')) or ((O,r))((O',r')) or ((O,A,B))((O',C,D)), 112
\tkzInterLC, 106
\tkzInterLC: options
N, 106
R, 106
common=pt, 106
near, 106
with nodes, 106
\tkzInterLC[(options)]((A,B))((O,C)) or ((O,r)) or ((O,C,D)), 106
\tkzInterLL, 106
\tkzIsLinear, 186, 187
\tkzIsLinear: arguments
(pt1,pt2,pt3), 186
\tkzIsLinear((pt1,pt2,pt3)), 186
\tkzIsOrtho, 186, 187
\tkzIsOrtho: arguments
(pt1,pt2,pt3), 186
\tkzIsOrtho((pt1,pt2,pt3)), 186
\tkzLabelAngle, 168
\tkzLabelAngle: options
pos, 169
\tkzLabelAngles[],170
\tkzLabelAngles[(local options)]((A,B))((A',B')) etc., 170
\tkzLabelAngle[(local options)]((A,B)), 168
\tkzLabelArc(A,B){5}, 171
\tkzLabelArc[],171
\tkzLabelArc: arguments
(pt1,pt2,pt3), 171
label, 171
\tkzLabelArc: options
pos, 171
\tkzLabelArc[(local options)]((pt1,pt2,pt3){(label)}, 171
\tkzLabelCircle, 96, 170
\tkzLabelCircle: options
tikz options, 170
\tkzLabelCircle[(tikz options)]((0,A){(angle)}{(label)}, 170
\tkzLabelLine(A,B), 168
\tkzLabelLine[],168
\tkzLabelLine: arguments
label, 168
\tkzLabelLine: options
pos, 168
\tkzLabelLine[(local options)]((pt1,pt2){(label)}, 168
\tkzLabelPoint(A){A_1}, 165
\tkzLabelPoint(A,B,C), 166
Index

\tkzLabelPoint, 165
\tkzLabelPoint: arguments
 \point, 165
\tkzLabelPoint: options
 \TikZ options, 165
\tkzLabelPoints(A,B,C), 165
\tkzLabelPoints, 165, 166
\tkzLabelPoints: arguments
 list of points, 165, 166
\tkzLabelPoints\{(local options)\}\{(A_1,A_2,...)\}, 165, 166
\tkzLabelPoint\{(local options)\}\{(point)\}\{(label)\}, 165
\tkzLabelSegment(A,B), 166
\tkzLabelSegment: arguments
 (pt1,pt2), 166
 \label, 166
\tkzLabelSegment: options
 \pos, 166
\tkzLabelSegments, 168
\tkzLabelSegments\{(local options)\}\{(pt1,pt2 pt3,pt4 ...)\}, 168
\tkzLabelSegment\{(local options)\}\{(pt1,pt2)\}\{(label)\}, 166
\tkzMarkAngle, 159, 160, 201, 245
\tkzMarkAngle: options
 \arc, 160
 \mark, 160
 \mkcolor, 160
 \mkpos, 160
 \mksize, 160
 \size, 160
\tkzMarkAngles, 160
\tkzMarkAngles\{(local options)\}\{(A,O,B)\}\{(A',O',B')\}etc., 160
\tkzMarkAngle\{(local options)\}\{(A,O,B)\}, 160
\tkzMarkArc, 159
\tkzMarkArc: options
 \color, 159
 \mark, 159
 \pos, 159
 \size, 159
\tkzMarkArc\{(local options)\}\{(pt1,pt2,pt3)\}, 159
\tkzMarkRightAngle, 160
\tkzMarkRightAngle: options
 \german, 160
 \size, 160
\tkzMarkRightAngles, 162
\tkzMarkRightAngles\{(local options)\}\{(A,O,B)\}\{(A',O',B')\}etc., 162
\tkzMarkRightAngle\{(local options)\}\{(A,O,B)\}, 160
\tkzMarkSegment, 158
\tkzMarkSegment: options
 \color, 158
 \mark, 158
 \pos, 158
 \size, 158
\tkzMarkSegments, 158
\tkzMarkSegments\{(local options)\}\{(pt1,pt2 pt3,pt4 ...)\}, 158
\tkzMarkSegment\{(local options)\}\{(pt1,pt2)\}, 158
\tkzPermute, 90
\tkzPermute: arguments
 (pt1,pt2,pt3), 90

\tkz-euclide AlterMundus
\tkzPermute((pt1, pt2, pt3)), 90
\tkzPicAngle, 162
\tkzPicAngle: options
tikz option, 162
\tkzPicAngle[[tikz options]]((A, O, B)), 162
\tkzPicRightAngle, 162
\tkzPicRightAngle: options
tikz option, 162
\tkzPicRightAngle[[tikz options]]((A, O, B)), 162
\tkzPowerCircle, 184
\tkzPowerCircle: arguments
(pt1)(pt2, pt3), 184
\tkzPowerCircle((pt1))(pt2, pt3), 184
\tkzProtractor, 16, 177
\tkzProtractor: options
lw, 177
return, 177
scale, 177
\tkzProtractor[local options]((O, A)), 177
\tkzpttocm, 180
\tkzpttocm: arguments
(number){name of macro}, 180
\tkzpttocm(number){name of macro}, 180
\tkzSaveBB, 17
\tkzSetUpArc, 18, 193
\tkzSetUpArc: options
color, 193
line width, 193
style, 193
\tkzSetUpArc[local options], 193
\tkzSetUpColors, 189
\tkzSetUpCompass, 18, 194
\tkzSetUpCompass: options
color, 194
delta, 194
line width, 194
style, 194
\tkzSetUpCompass[local options], 194
\tkzSetUpLabel, 18, 194, 195
\tkzSetUpLine, 18, 124, 191
\tkzSetUpLine: options
add, 191
color, 191
line width, 191
style, 191
\tkzSetUpLine[local options], 191
\tkzSetUpPoint, 18, 189-191
\tkzSetUpPoint: options
color, 189
fill, 189
shape, 189
size, 189
\tkzSetUpPoint[local options], 189
\tkzSetUpStyle, 18, 195
\tkzSetUpStyle[local options], 195
\tkzShowBB, 149
\tkzShowBB[local options], 149
\tkzShowLine, 174, 175, 194
\tkzShowLine: options
 K, 174
 bisector, 174
 gap, 174
 length, 174
 mediator, 174
 orthogonal, 174
 perpendicular, 174
 ratio, 174
 size, 174
\tkzShowLine[% (local options)](⟨pt1,pt2⟩) or ⟨pt1,pt2,pt3⟩, 174
\tkzShowTransformation, 175, 176
\tkzShowTransformation: options
 K, 176
 gap, 176
 length, 176
 projection=onto pt1--pt2, 176
 ratio, 176
 reflection= over pt1--pt2, 176
 size, 176
 symmetry=center pt, 176
 translation=from pt1 to pt2, 176
\tkzShowTransformation[% (local options)](⟨pt1,pt2⟩) or ⟨pt1,pt2,pt3⟩, 175
\tkzSwapPoints, 182
\tkzSwapPoints: arguments
 ⟨pt1,pt2⟩, 182
\tkzSwapPoints(⟨pt1,pt2⟩), 182
\tkzTestInterCC, 112
\tkzTestInterCC(⟨O,A⟩)(⟨O',B⟩), 112
\tkzTestInterLC, 106
\tkzTestInterLC(⟨O,A⟩)(⟨O',B⟩), 106
\useasboundingbox, 147
\usetkzobj{all}, 17
\usetkztool, 18

\Vx, 72
\Vy, 72

\xstep, 148
\ystep, 148