
Texinfo

Texinfo
The GNU Documentation Formatfor Texinfo version 3.12February 1998

Robert J. ChassellRichard M. Stallman

Copyright c
 1988, 90, 91, 92, 93, 95, 96, 97, 98 Free Software Foundation, Inc.Published by the Free Software Foundation59 Temple Place Suite 330Boston, MA 02111-1307USAISBN 1-882114-65-5Permission is granted to make and distribute verbatim copies of this manual provided thecopyright notice and this permission notice are preserved on all copies.Permission is granted to copy and distribute modi�ed versions of this manual under the con-ditions for verbatim copying, provided that the entire resulting derived work is distributedunder the terms of a permission notice identical to this one.Permission is granted to copy and distribute translations of this manual into another lan-guage, under the above conditions for modi�ed versions, except that this permission noticemay be stated in a translation approved by the Free Software Foundation.
Cover art by Etienne Suvasa.

Texinfo Copying Conditions 1

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo include portions ofGNU Emacs, plus other separate programs (including makeinfo, info, texindex, and`texinfo.tex'). These programs are free; this means that everyone is free to use themand free to redistribute them on a free basis. The Texinfo-related programs are not in thepublic domain; they are copyrighted and there are restrictions on their distribution, butthese restrictions are designed to permit everything that a good cooperating citizen wouldwant to do. What is not allowed is to try to prevent others from further sharing any versionof these programs that they might get from you.Speci�cally, we want to make sure that you have the right to give away copies of theprograms that relate to Texinfo, that you receive source code or else can get it if you wantit, that you can change these programs or use pieces of them in new free programs, andthat you know you can do these things.To make sure that everyone has such rights, we have to forbid you to deprive anyoneelse of these rights. For example, if you distribute copies of the Texinfo related programs,you must give the recipients all the rights that you have. You must make sure that they,too, receive or can get the source code. And you must tell them their rights.Also, for our own protection, we must make certain that everyone �nds out that thereis no warranty for the programs that relate to Texinfo. If these programs are modi�edby someone else and passed on, we want their recipients to know that what they have isnot what we distributed, so that any problems introduced by others will not re
ect on ourreputation.The precise conditions of the licenses for the programs currently being distributed thatrelate to Texinfo are found in the General Public Licenses that accompany them.

2 Texinfo 3.12

Chapter 1: Overview of Texinfo 3

1 Overview of Texinfo

Texinfo1 is a documentation system that uses a single source �le to produce bothon-line information and printed output. This means that instead of writing two di�erentdocuments, one for the on-line help or other on-line information and the other for a typesetmanual or other printed work, you need write only one document. When the work is revised,you need revise only one document. (You can read the on-line information, known as an
Info �le , with an Info documentation-reading program.)

Using Texinfo, you can create a printed document with the normal features of a book,including chapters, sections, cross references, and indices. From the same Texinfo source�le, you can create a menu-driven, on-line Info �le with nodes, menus, cross references,and indices. You can, if you wish, make the chapters and sections of the printed documentcorrespond to the nodes of the on-line information; and you use the same cross referencesand indices for both the Info �le and the printed work. The XEmacs User's Manual is agood example of a Texinfo �le, as is this manual.
To make a printed document, you process a Texinfo source �le with the TEX typesettingprogram. This creates a DVI �le that you can typeset and print as a book or report. (Notethat the Texinfo language is completely di�erent from TEX's usual language, plain TEX.)If you do not have TEX, but do have troff or nroff, you can use the texi2roff programinstead.
To make an Info �le, you process a Texinfo source �le with the makeinfo utility orEmacs's texinfo-format-buffer command; this creates an Info �le that you can installon-line.
TEX and texi2roff work with many types of printers; similarly, Info works with almostevery type of computer terminal. This power makes Texinfo a general purpose system, butbrings with it a constraint, which is that a Texinfo �le may contain only the customary\typewriter" characters (letters, numbers, spaces, and punctuation marks) but no specialgraphics.
A Texinfo �le is a plain ascii �le containing text and @-commands (words precededby an `@') that tell the typesetting and formatting programs what to do. You may edit aTexinfo �le with any text editor; but it is especially convenient to use GNU Emacs sincethat editor has a special mode, called Texinfo mode, that provides various Texinfo-relatedfeatures. (See Chapter 2 [Texinfo Mode], page 13.)
Before writing a Texinfo source �le, you should become familiar with the Info docu-mentation reading program and learn about nodes, menus, cross references, and the rest.(See Info �le `info', node `Top', for more information.)
You can use Texinfo to create both on-line help and printed manuals; moreover, Texinfois freely redistributable. For these reasons, Texinfo is the format in which documentationfor GNU utilities and libraries is written.

1 Note that the �rst syllable of \Texinfo" is pronounced like \speck", not \hex". This odd pronunciation
is derived from, but is not the same as, the pronunciation of T EX. In the word T EX, the `X' is actually
the Greek letter \chi" rather than the English letter \ex". Pronounce T EX as if the `X' were the last
sound in the name `Bach'; but pronounce Texinfo as if the `x' were a `k'. Spell \Texinfo" with a capital
\T" and write the other letters in lower case.

4 Texinfo 3.12

1.1 Info �les
An Info �le is a Texinfo �le formatted so that the Info documentation reading programcan operate on it. (makeinfo and texinfo-format-buffer are two commands that converta Texinfo �le into an Info �le.)
Info �les are divided into pieces called nodes, each of which contains the discussion ofone topic. Each node has a name, and contains both text for the user to read and pointersto other nodes, which are identi�ed by their names. The Info program displays one nodeat a time, and provides commands with which the user can move to other related nodes.
Each node of an Info �le may have any number of child nodes that describe subtopicsof the node's topic. The names of child nodes are listed in a menu within the parent node;this allows you to use certain Info commands to move to one of the child nodes. Generally,an Info �le is organized like a book. If a node is at the logical level of a chapter, its childnodes are at the level of sections; likewise, the child nodes of sections are at the level ofsubsections.
All the children of any one parent are linked together in a bidirectional chain of `Next'and `Previous' pointers. The `Next' pointer provides a link to the next section, and the`Previous' pointer provides a link to the previous section. This means that all the nodesthat are at the level of sections within a chapter are linked together. Normally the order inthis chain is the same as the order of the children in the parent's menu. Each child noderecords the parent node name as its `Up' pointer. The last child has no `Next' pointer, andthe �rst child has the parent both as its `Previous' and as its `Up' pointer.2
The book-like structuring of an Info �le into nodes that correspond to chapters, sections,and the like is a matter of convention, not a requirement. The `Up', `Previous', and `Next'pointers of a node can point to any other nodes, and a menu can contain any other nodes.Thus, the node structure can be any directed graph. But it is usually more comprehensibleto follow a structure that corresponds to the structure of chapters and sections in a printedbook or report.
In addition to menus and to `Next', `Previous', and `Up' pointers, Info provides pointersof another kind, called references, that can be sprinkled throughout the text. This is usuallythe best way to represent links that do not �t a hierarchical structure.
Usually, you will design a document so that its nodes match the structure of chaptersand sections in the printed output. But occasionally there are times when this is not rightfor the material being discussed. Therefore, Texinfo uses separate commands to specify thenode structure for the Info �le and the section structure for the printed output.
Generally, you enter an Info �le through a node that by convention is named `Top'.This node normally contains just a brief summary of the �le's purpose, and a large menuthrough which the rest of the �le is reached. From this node, you can either traverse the�le systematically by going from node to node, or you can go to a speci�c node listed inthe main menu, or you can search the index menus and then go directly to the node thathas the information you want. Alternatively, with the standalone Info program, you canspecify speci�c menu items on the command line (see section \Top" in Info).

2 In some documents, the �rst child has no `Previous' pointer. Occasionally, the last child has the node
name of the next following higher level node as its `Next' pointer.

Chapter 1: Overview of Texinfo 5

If you want to read through an Info �le in sequence, as if it were a printed manual,you can hit hSPCi repeatedly, or you get the whole �le with the advanced Info command g
* . (See Info �le `info', node `Expert'.)The `dir' �le in the `info' directory serves as the departure point for the whole Infosystem. From it, you can reach the `Top' nodes of each of the documents in a complete Infosystem.
1.2 Printed Books

A Texinfo �le can be formatted and typeset as a printed book or manual. To do this,you need TEX, a powerful, sophisticated typesetting program written by Donald Knuth.3A Texinfo-based book is similar to any other typeset, printed work: it can have atitle page, copyright page, table of contents, and preface, as well as chapters, numbered orunnumbered sections and subsections, page headers, cross references, footnotes, and indices.You can use Texinfo to write a book without ever having the intention of converting itinto on-line information. You can use Texinfo for writing a printed novel, and even to writea printed memo, although this latter application is not recommended since electronic mailis so much easier.TEX is a general purpose typesetting program. Texinfo provides a �le called`texinfo.tex' that contains information (de�nitions or macros) that TEX uses when ittypesets a Texinfo �le. (`texinfo.tex' tells TEX how to convert the Texinfo @-commandsto TEX commands, which TEX can then process to create the typeset document.)`texinfo.tex' contains the speci�cations for printing a document.Most often, documents are printed on 8.5 inch by 11 inch pages (216 mm by 280 mm;this is the default size), but you can also print for 7 inch by 9.25 inch pages (178 mmby 235 mm; the @smallbook size) or on European A4 size paper (@afourpaper). (SeeSection 19.10 [Printing \Small" Books], page 141. Also, see Section 19.11 [Printing on A4Paper], page 141.)By changing the parameters in `texinfo.tex', you can change the size of the printeddocument. In addition, you can change the style in which the printed document is formatted;for example, you can change the sizes and fonts used, the amount of indentation for eachparagraph, the degree to which words are hyphenated, and the like. By changing thespeci�cations, you can make a book look digni�ed, old and serious, or light-hearted, youngand cheery.TEX is freely distributable. It is written in a superset of Pascal called WEB and canbe compiled either in Pascal or (by using a conversion program that comes with the TEXdistribution) in C. (See section \TEX Mode" in XEmacs User's Manual, for informationabout TEX.)TEX is very powerful and has a great many features. Because a Texinfo �le must beable to present information both on a character-only terminal in Info form and in a typesetbook, the formatting commands that Texinfo supports are necessarily limited.See Appendix J [How to Obtain TEX], page 203.
3 You can also use thetexi2roff program if you do not have TEX; since Texinfo is designed for use with

TEX, texi2roff is not described here. texi2roff is not part of the standard GNU distribution.

6 Texinfo 3.12

1.3 @-commands
In a Texinfo �le, the commands that tell TEX how to typeset the printed manual andtell makeinfo and texinfo-format-buffer how to create an Info �le are preceded by `@';they are called @-commands. For example, @node is the command to indicate a node and@chapter is the command to indicate the start of a chapter.

Please note:All the @-commands, with the exception of the @TeX{} command,must be written entirely in lower case.
The Texinfo @-commands are a strictly limited set of constructs. The strict limits makeit possible for Texinfo �les to be understood both by TEX and by the code that convertsthem into Info �les. You can display Info �les on any terminal that displays alphabetic andnumeric characters. Similarly, you can print the output generated by TEX on a wide varietyof printers.
Depending on what they do or what arguments4 they take, you need to write @-commands on lines of their own or as part of sentences:

� Write a command such as @noindent at the beginning of a line as the only text on theline. (@noindent prevents the beginning of the next line from being indented as thebeginning of a paragraph.)
� Write a command such as @chapter at the beginning of a line followed by the com-mand's arguments, in this case the chapter title, on the rest of the line. (@chaptercreates chapter titles.)
� Write a command such as @dots{} wherever you wish but usually within a sentence.(@dots{} creates dots . . .)
� Write a command such as @code{sample-code} wherever you wish (but usually within asentence) with its argument, sample-codein this example, between the braces. (@codemarks text as being code.)
� Write a command such as @example at the beginning of a line of its own; write thebody-text on following lines; and write the matching @end command, @end example inthis case, at the beginning of a line of its own after the body-text. (@example . . . @endexample indents and typesets body-text as an example.)

As a general rule, a command requires braces if it mingles among other text; but it doesnot need braces if it starts a line of its own. The non-alphabetic commands, such as @:, areexceptions to the rule; they do not need braces.
As you gain experience with Texinfo, you will rapidly learn how to write the di�erentcommands: the di�erent ways to write commands make it easier to write and read Texinfo�les than if all commands followed exactly the same syntax. (For details about @-commandsyntax, see Appendix I [@-Command Syntax], page 201.)

4 The word argument comes from the way it is used in mathematics and does not refer to a disputation
between two people; it refers to the information presented to the command. According to the Oxford
English Dictionary , the word derives from the Latin for to make clear, prove; thus it came to mean
`the evidence o�ered as proof', which is to say, `the information o�ered', which led to its mathematical
meaning. In its other thread of derivation, the word came to mean `to assert in a manner against which
others may make counter assertions', which led to the meaning of `argument' as a disputation.

Chapter 1: Overview of Texinfo 7

1.4 General Syntactic Conventions
All printable ascii characters except `@', `{' and `}' can appear in a Texinfo �le andstand for themselves. `@' is the escape character which introduces commands. `{' and `}'should be used only to surround arguments to certain commands. To put one of thesespecial characters into the document, put an `@' character in front of it, like this: `@@', `@{',and `@}'.It is customary in TEX to use doubled single-quote characters to begin and end quo-tations: `` and '' . This convention should be followed in Texinfo �les. TEX convertsdoubled single-quote characters to left- and right-hand doubled quotation marks, \like this",and Info converts doubled single-quote characters to ascii double-quotes: `` and ''to " .Use three hyphens in a row, `---', for a dash|like this. In TEX, a single or doublehyphen produces a printed dash that is shorter than the usual typeset dash. Info reducesthree hyphens to two for display on the screen.To prevent a paragraph from being indented in the printed manual, put the command@noindent on a line by itself before the paragraph.If you mark o� a region of the Texinfo �le with the @iftex and @end iftex com-mands, that region will appear only in the printed copy; in that region, you can usecertain commands borrowed from plain TEX that you cannot use in Info. Likewise, ifyou mark o� a region with the @ifinfo and @end ifinfo commands, that region willappear only in the Info �le; in that region, you can use Info commands that you can-not use in TEX. Similarly for @ifhtml ... @end ifhtml, @ifnothtml ... @end ifnothtml,@ifnotinfo ... @end ifnotinfo, @ifnottex ... @end ifnottex, See Chapter 17 [Condi-tionals], page 127.

Caution: Do not use tabs in a Texinfo �le! TEX uses variable-width fonts,which means that it cannot prede�ne a tab to work in all circumstances. Con-sequently, TEX treats tabs like single spaces, and that is not what they looklike. Furthermore, makeinfo does nothing special with tabs, and thus a tabcharacter in your input �le may appear di�erently in the output.To avoid this problem, Texinfo mode causes GNU Emacs to insert multiplespaces when you press the hTABi key.Also, you can run untabify in Emacs to convert tabs in a region to multiplespaces.Don't use tabs.
1.5 Comments

You can write comments in a Texinfo �le that will not appear in either the Info �le orthe printed manual by using the @comment command (which may be abbreviated to @c).Such comments are for the person who reads the Texinfo �le. All the text on a line thatfollows either @comment or @c is a comment; the rest of the line does not appear in eitherthe Info �le or the printed manual. (Often, you can write the @comment or @c in the middleof a line, and only the text that follows after the @comment or @c command does not appear;but some commands, such as @settitle and @setfilename, work on a whole line. Youcannot use @comment or @c in a line beginning with such a command.)

8 Texinfo 3.12

You can write long stretches of text that will not appear in either the Info �le or theprinted manual by using the @ignore and @end ignore commands. Write each of thesecommands on a line of its own, starting each command at the beginning of the line. Textbetween these two commands does not appear in the processed output. You can use @ignoreand @end ignore for writing comments. Often, @ignore and @end ignore is used to enclosea part of the copying permissions that applies to the Texinfo source �le of a document, butnot to the Info or printed version of the document.
1.6 What a Texinfo File Must Have

By convention, the names of Texinfo �les end with one of the extensions `.texinfo',`.texi', or `.tex'. The longer extension is preferred since it describes more clearly to ahuman reader the nature of the �le. The shorter extensions are for operating systems thatcannot handle long �le names.In order to be made into a printed manual and an Info �le, a Texinfo �le must beginwith lines like this:
\input texinfo@setfilename info-�le-name@settitle name-of-manualThe contents of the �le follow this beginning, and then you must end a Texinfo �le with aline like this:
@byeThe `\input texinfo' line tells TEX to use the `texinfo.tex' �le, which tells TEX how totranslate the Texinfo @-commands into TEX typesetting commands. (Note the use of thebackslash, `\'; this is correct for TEX.) The `@setfilename' line provides a name for theInfo �le and tells TEX to open auxiliary �les. The `@settitle' line speci�es a title for thepage headers (or footers) of the printed manual.The @bye line at the end of the �le on a line of its own tells the formatters that the�le is ended and to stop formatting.Usually, you will not use quite such a spare format, but will include mode setting andstart-of-header and end-of-header lines at the beginning of a Texinfo �le, like this:
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename info-�le-name@settitle name-of-manual@c %**end of headerIn the �rst line, `-*-texinfo-*-' causes Emacs to switch into Texinfo mode when you editthe �le.The @c lines which surround the `@setfilename' and `@settitle' lines are optional,but you need them in order to run TEX or Info on just part of the �le. (See Section 3.2.2[Start of Header], page 27, for more information.)Furthermore, you will usually provide a Texinfo �le with a title page, indices, and thelike. But the minimum, which can be useful for short documents, is just the three lines atthe beginning and the one line at the end.

Chapter 1: Overview of Texinfo 9

1.7 Six Parts of a Texinfo File
Generally, a Texinfo �le contains more than the minimal beginning and end|it usuallycontains six parts:

1. Header The Header names the �le, tells TEX which de�nitions' �le to use, and performsother \housekeeping" tasks.
2. Summary Description and CopyrightThe Summary Description and Copyright segment describes the document andcontains the copyright notice and copying permissions for the Info �le. Thesegment must be enclosed between @ifinfo and @end ifinfo commands sothat the formatters place it only in the Info �le.
3. Title and CopyrightThe Title and Copyright segment contains the title and copyright pages andcopying permissions for the printed manual. The segment must be enclosedbetween @titlepage and @end titlepage commands. The title and copyrightpage appear only in the printed manual.
4. `Top' Node and Master MenuThe Master Menu contains a complete menu of all the nodes in the whole Info�le. It appears only in the Info �le, in the `Top' node.
5. Body The Body of the document may be structured like a traditional book or ency-clopedia or it may be free form.
6. End The End contains commands for printing indices and generating the table ofcontents, and the @bye command on a line of its own.
1.8 A Short Sample Texinfo File

Here is a complete but very short Texinfo �le, in six parts. The �rst three parts ofthe �le, from `\input texinfo' through to `@end titlepage', look more intimidating thanthey are. Most of the material is standard boilerplate; when you write a manual, simplyinsert the names for your own manual in this segment. (See Chapter 3 [Beginning a File],page 25.)In the following, the sample text is indented ; comments on it are not. The complete �le,without any comments, is shown in Appendix C [Sample Texinfo File], page 179.
Part 1: Header

The header does not appear in either the Info �le or the printed output. It sets variousparameters, including the name of the Info �le and the title used in the header.\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Document@c %**end of header
@setchapternewpage odd

10 Texinfo 3.12

Part 2: Summary Description and Copyright

The summary description and copyright segment does not appear in the printed document.
@ifinfoThis is a short example of a complete Texinfo file.
Copyright @copyright{} 1990 Free Software Foundation, Inc.@end ifinfo

Part 3: Titlepage and Copyright

The titlepage segment does not appear in the Info �le.
@titlepage@sp 10@comment The title is printed in a large font.@center @titlefont{Sample Title}
@c The following two commands start the copyright page.@page@vskip 0pt plus 1filllCopyright @copyright{} 1990 Free Software Foundation, Inc.@end titlepage

Part 4: `Top' Node and Master Menu

The `Top' node contains the master menu for the Info �le. Since a printed manual uses atable of contents rather than a menu, the master menu appears only in the Info �le.
@node Top, First Chapter, , (dir)@comment node-name, next, previous, up
@menu* First Chapter:: The first chapter is theonly chapter in this sample.* Concept Index:: This index has two entries.@end menu

Part 5: The Body of the Document

The body segment contains all the text of the document, but not the indices or table ofcontents. This example illustrates a node and a chapter containing an enumerated list.
@node First Chapter, Concept Index, Top, Top@comment node-name, next, previous, up@chapter First Chapter@cindex Sample index entry
This is the contents of the first chapter.@cindex Another sample index entry

Chapter 1: Overview of Texinfo 11

Here is a numbered list.
@enumerate@itemThis is the first item.
@itemThis is the second item.@end enumerate
The @code{makeinfo} and @code{texinfo-format-buffer}commands transform a Texinfo file such as this intoan Info file; and @TeX{} typesets it for a printedmanual.

Part 6: The End of the Document

The end segment contains commands both for generating an index in a node and unnum-bered chapter of its own and for generating the table of contents; and it contains the @byecommand that marks the end of the document.
@node Concept Index, , First Chapter, Top@comment node-name, next, previous, up@unnumbered Concept Index
@printindex cp
@contents@bye

The Results

Here is what the contents of the �rst chapter of the sample look like:
This is the contents of the �rst chapter.Here is a numbered list.1. This is the �rst item.2. This is the second item.
The makeinfo and texinfo-format-buffer commands transform a Texinfo�le such as this into an Info �le; and TEX typesets it for a printed manual.

1.9 Acknowledgements
Richard M. Stallman wrote Edition 1.0 of this manual. Robert J. Chassell revised andextended it, starting with Edition 1.1. Karl Berry made updates for the Texinfo 3.8 andsubsequent releases, starting with Edition 2.22.
Our thanks go out to all who helped improve this work, particularly to Fran�cois Pinardand David D. Zuhn, who tirelessly recorded and reported mistakes and obscurities; our

12 Texinfo 3.12

special thanks go to Melissa Weisshaus for her frequent and often tedious reviews of nearlysimilar editions. Our mistakes are our own.Please send suggestions and corrections to:Internet address:bug-texinfo@gnu.orgPlease include the manual's edition number and update date in your messages.

Chapter 2: Using Texinfo Mode 13

2 Using Texinfo Mode

You may edit a Texinfo �le with any text editor you choose. A Texinfo �le is no di�erentfrom any other ascii �le. However, GNU Emacs comes with a special mode, called Texinfomode, that provides Emacs commands and tools to help ease your work.This chapter describes features of GNU Emacs' Texinfo mode but not any features ofthe Texinfo formatting language. If you are reading this manual straight through from thebeginning, you may want to skim through this chapter brie
y and come back to it afterreading succeeding chapters which describe the Texinfo formatting language in detail.Texinfo mode provides special features for working with Texinfo �les:� Insert frequently used @-commands.� Automatically create @node lines.� Show the structure of a Texinfo source �le.� Automatically create or update the `Next', `Previous', and `Up' pointers of a node.� Automatically create or update menus.� Automatically create a master menu.� Format a part or all of a �le for Info.� Typeset and print part or all of a �le.
Perhaps the two most helpful features are those for inserting frequently used@-commands and for creating node pointers and menus.

2.1 The Usual GNU Emacs Editing Commands
In most cases, the usual Text mode commands work the same in Texinfo mode as theydo in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs'general purpose editing features. The major di�erence concerns �lling. In Texinfo mode,the paragraph separation variable and syntax table are rede�ned so that Texinfo commandsthat should be on lines of their own are not inadvertently included in paragraphs. Thus, the

M-q (fill-paragraph) command will re�ll a paragraph but not mix an indexing commandon a line adjacent to it into the paragraph.In addition, Texinfo mode sets the page-delimiter variable to the value of texinfo-chapter-level-regexp; by default, this is a regular expression matching the commands forchapters and their equivalents, such as appendices. With this value for the page delimiter,you can jump from chapter title to chapter title with the C-x] (forward-page) and C-x
[(backward-page) commands and narrow to a chapter with the C-x p (narrow-to-page)command. (See section \Pages" in XEmacs User's Manual, for details about the pagecommands.)You may name a Texinfo �le however you wish, but the convention is to end a Texinfo�le name with one of the three extensions `.texinfo', `.texi', or `.tex'. A longer extensionis preferred, since it is explicit, but a shorter extension may be necessary for operatingsystems that limit the length of �le names. GNU Emacs automatically enters Texinfo modewhen you visit a �le with a `.texinfo' or `.texi' extension. Also, Emacs switches toTexinfo mode when you visit a �le that has `-*-texinfo-*-' in its �rst line. If ever youare in another mode and wish to switch to Texinfo mode, type M-x texinfo-mode.

14 Texinfo 3.12

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.In particular, the keybindings are very easy to change. The keybindings described here arethe default or standard ones.
2.2 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands intothe bu�er. You can use these commands to save keystrokes.The insert commands are invoked by typing C-c twice and then the �rst letter of the@-command:
C-c C-c c
M-x texinfo-insert- @codeInsert @code{} and put the cursor between the braces.
C-c C-c d
M-x texinfo-insert- @dfnInsert @dfn{} and put the cursor between the braces.
C-c C-c e
M-x texinfo-insert- @endInsert @end and attempt to insert the correct following word, such as `example'or `table'. (This command does not handle nested lists correctly, but insertsthe word appropriate to the immediately preceding list.)
C-c C-c i
M-x texinfo-insert- @itemInsert @item and put the cursor at the beginning of the next line.
C-c C-c k
M-x texinfo-insert- @kbdInsert @kbd{} and put the cursor between the braces.
C-c C-c n
M-x texinfo-insert- @nodeInsert @node and a comment line listing the sequence for the `Next', `Previous',and `Up' nodes. Leave point after the @node.
C-c C-c o
M-x texinfo-insert- @noindentInsert @noindent and put the cursor at the beginning of the next line.
C-c C-c s
M-x texinfo-insert- @sampInsert @samp{} and put the cursor between the braces.
C-c C-c t
M-x texinfo-insert- @tableInsert @table followed by a hSPCi and leave the cursor after the hSPCi .
C-c C-c v
M-x texinfo-insert- @varInsert @var{} and put the cursor between the braces.

Chapter 2: Using Texinfo Mode 15

C-c C-c x
M-x texinfo-insert- @exampleInsert @example and put the cursor at the beginning of the next line.
C-c C-c {
M-x texinfo-insert-bracesInsert {} and put the cursor between the braces.
C-c C-c }
C-c C-c]
M-x up-list Move from between a pair of braces forward past the closing brace. Typing

C-c C-c] is easier than typing C-c C-c }, which is, however, more mnemonic;hence the two keybindings. (Also, you can move out from between braces bytyping C-f .)
To put a command such as @code{...} around an existing word, position the cursor infront of the word and type C-u 1 C-c C-c c. This makes it easy to edit existing plain text.The value of the pre�x argument tells Emacs how many words following point to includebetween braces|`1' for one word, `2' for two words, and so on. Use a negative argument toenclose the previous word or words. If you do not specify a pre�x argument, Emacs insertsthe @-command string and positions the cursor between the braces. This feature works onlyfor those @-commands that operate on a word or words within one line, such as @kbd and@var.This set of insert commands was created after analyzing the frequency with whichdi�erent @-commands are used in the GNU Emacs Manual and the GDB Manual . If youwish to add your own insert commands, you can bind a keyboard macro to a key, useabbreviations, or extend the code in `texinfo.el'.
C-c C-c C-d (texinfo-start-menu-description) is an insert command that worksdi�erently from the other insert commands. It inserts a node's section or chapter title inthe space for the description in a menu entry line. (A menu entry has three parts, theentry name, the node name, and the description. Only the node name is required, but adescription helps explain what the node is about. See Section 7.2 [The Parts of a Menu],page 56.)To use texinfo-start-menu-description, position point in a menu entry line andtype C-c C-c C-d. The command looks for and copies the title that goes with the nodename, and inserts the title as a description; it positions point at beginning of the insertedtext so you can edit it. The function does not insert the title if the menu entry line alreadycontains a description.This command is only an aid to writing descriptions; it does not do the whole job. Youmust edit the inserted text since a title tends to use the same words as a node name but auseful description uses di�erent words.

2.3 Showing the Section Structure of a File
You can show the section structure of a Texinfo �le by using the C-c C-s command(texinfo-show-structure). This command shows the section structure of a Texinfo �leby listing the lines that begin with the @-commands for @chapter, @section, and the like.

16 Texinfo 3.12

It constructs what amounts to a table of contents. These lines are displayed in anotherbu�er called the `*Occur*' bu�er. In that bu�er, you can position the cursor over one ofthe lines and use the C-c C-c command (occur-mode-goto-occurrence), to jump to thecorresponding spot in the Texinfo �le.
C-c C-s
M-x texinfo-show-structureShow the @chapter, @section, and such lines of a Texinfo �le.
C-c C-c
M-x occur-mode-goto-occurrenceGo to the line in the Texinfo �le corresponding to the line under the cursor inthe `*Occur*' bu�er.

If you call texinfo-show-structure with a pre�x argument by typing C-u C-c C-s, itwill list not only those lines with the @-commands for @chapter, @section, and the like, butalso the @node lines. (This is how the texinfo-show-structure command worked withoutan argument in the �rst version of Texinfo. It was changed because @node lines clutter upthe `*Occur*' bu�er and are usually not needed.) You can use texinfo-show-structurewith a pre�x argument to check whether the `Next', `Previous', and `Up' pointers of an@node line are correct.Often, when you are working on a manual, you will be interested only in the structureof the current chapter. In this case, you can mark o� the region of the bu�er that youare interested in by using the C-x n n (narrow-to-region) command and texinfo-show-structure will work on only that region. To see the whole bu�er again, use C-x n w(widen). (See section \Narrowing" in XEmacs User's Manual, for more information aboutthe narrowing commands.)In addition to providing the texinfo-show-structure command, Texinfo mode setsthe value of the page delimiter variable to match the chapter-level @-commands. Thisenables you to use the C-x] (forward-page) and C-x [(backward-page) commands tomove forward and backward by chapter, and to use the C-x p (narrow-to-page) commandto narrow to a chapter. See section \Pages" in XEmacs User's Manual, for more informationabout the page commands.
2.4 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus andnode pointers. The commands are called \update" commands because their most frequentuse is for updating a Texinfo �le after you have worked on it; but you can use them toinsert the `Next', `Previous', and `Up' pointers into an @node line that has none and tocreate menus in a �le that has none.If you do not use the updating commands, you need to write menus and node pointersby hand, which is a tedious task.You can use the updating commands
� to insert or update the `Next', `Previous', and `Up' pointers of a node,
� to insert or update the menu for a section, and
� to create a master menu for a Texinfo source �le.

Chapter 2: Using Texinfo Mode 17

You can also use the commands to update all the nodes and menus in a region or in awhole Texinfo �le.
The updating commands work only with conventional Texinfo �les, which are struc-tured hierarchically like books. In such �les, a structuring command line must follow closelyafter each @node line, except for the `Top' @node line. (A structuring command line is aline beginning with @chapter, @section, or other similar command.)
You can write the structuring command line on the line that follows immediately afteran @node line or else on the line that follows after a single @comment line or a single @ifinfoline. You cannot interpose more than one line between the @node line and the structuringcommand line; and you may interpose only an @comment line or an @ifinfo line.
Commands which work on a whole bu�er require that the `Top' node be followed bya node with an @chapter or equivalent-level command. Note that the menu updatingcommands will not create a main or master menu for a Texinfo �le that has only @chapter-level nodes! The menu updating commands only create menus within nodes for lower levelnodes. To create a menu of chapters, you must provide a `Top' node.
The menu updating commands remove menu entries that refer to other Info �les sincethey do not refer to nodes within the current bu�er. This is a de�ciency. Rather than usemenu entries, you can use cross references to refer to other Info �les. None of the updatingcommands a�ect cross references.
Texinfo mode has �ve updating commands that are used most often: two are forupdating the node pointers or menu of a single node (or a region); two are for updatingevery node pointer and menu in a �le; and one, the texinfo-master-menu command, isfor creating a master menu for a complete �le, and optionally, for updating every node andmenu in the whole Texinfo �le.
The texinfo-master-menu command is the primary command:

C-c C-u m
M-x texinfo-master-menuCreate or update a master menu that includes all the other menus (incorporat-ing the descriptions from pre-existing menus, if any).

With an argument (pre�x argument, C-u, if interactive), �rst create or updateall the nodes and all the regular menus in the bu�er before constructing themaster menu. (See Section 3.5 [The Top Node and Master Menu], page 35, formore about a master menu.)
For texinfo-master-menu to work, the Texinfo �le must have a `Top' nodeand at least one subsequent node.
After extensively editing a Texinfo �le, you can type the following:

C-u M-x texinfo-master-menuor C-u C-c C-u m
This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for the personwho updates nodes and menus as he or she writes a Texinfo �le.

18 Texinfo 3.12

The commands are:
C-c C-u C-n
M-x texinfo-update-nodeInsert the `Next', `Previous', and `Up' pointers for the node that point is within(i.e., for the @node line preceding point). If the @node line has pre-existing`Next', `Previous', or `Up' pointers in it, the old pointers are removed and newones inserted. With an argument (pre�x argument, C-u, if interactive), thiscommand updates all @node lines in the region (which is the text between pointand mark).
C-c C-u C-m
M-x texinfo-make-menuCreate or update the menu in the node that point is within. With an argument(C-u as pre�x argument, if interactive), the command makes or updates menusfor the nodes which are either within or a part of the region.Whenever texinfo-make-menu updates an existing menu, the descriptions fromthat menu are incorporated into the new menu. This is done by copying de-scriptions from the existing menu to the entries in the new menu that have thesame node names. If the node names are di�erent, the descriptions are notcopied to the new menu.
C-c C-u C-e
M-x texinfo-every-node-updateInsert or update the `Next', `Previous', and `Up' pointers for every node in thebu�er.
C-c C-u C-a
M-x texinfo-all-menus-updateCreate or update all the menus in the bu�er. With an argument (C-u as pre�xargument, if interactive), �rst insert or update all the node pointers beforeworking on the menus.If a master menu exists, the texinfo-all-menus-update command updates it;but the command does not create a new master menu if none already exists.(Use the texinfo-master-menu command for that.)When working on a document that does not merit a master menu, you can typethe following:C-u C-c C-u C-aor C-u M-x texinfo-all-menus-updateThis updates all the nodes and menus.

The texinfo-column-for-description variable speci�es the column to which menudescriptions are indented. By default, the value is 32 although it is often useful to reduceit to as low as 24. You can set the variable with the M-x edit-options command (seesection \Editing Variable Values" in XEmacs User's Manual) or with the M-x set-variablecommand (see section \Examining and Setting Variables" in XEmacs User's Manual).Also, the texinfo-indent-menu-description command may be used to indent exist-ing menu descriptions to a speci�ed column. Finally, if you wish, you can use the texinfo-

Chapter 2: Using Texinfo Mode 19

insert-node-lines command to insert missing @node lines into a �le. (See Section 2.4.2[Other Updating Commands], page 19, for more information.)
2.4.1 Updating Requirements

To use the updating commands, you must organize the Texinfo �le hierarchically withchapters, sections, subsections, and the like. When you construct the hierarchy of themanual, do not `jump down' more than one level at a time: you can follow the `Top' nodewith a chapter, but not with a section; you can follow a chapter with a section, but not witha subsection. However, you may `jump up' any number of levels at one time|for example,from a subsection to a chapter.Each @node line, with the exception of the line for the `Top' node, must be followed bya line with a structuring command such as @chapter, @section, or @unnumberedsubsec.Each @node line/structuring-command line combination must look either like this:@node Comments, Minimum, Conventions, Overview@comment node-name, next, previous, up@section Commentsor like this (without the @comment line):@node Comments, Minimum, Conventions, Overview@section CommentsIn this example, `Comments' is the name of both the node and the section. The next node iscalled `Minimum' and the previous node is called `Conventions'. The `Comments' section iswithin the `Overview' node, which is speci�ed by the `Up' pointer. (Instead of an @commentline, you can write an @ifinfo line.)If a �le has a `Top' node, it must be called `top' or `Top' and be the �rst node in the�le. The menu updating commands create a menu of sections within a chapter, a menu ofsubsections within a section, and so on. This means that you must have a `Top' node if youwant a menu of chapters.Incidentally, the makeinfo command will create an Info �le for a hierarchically orga-nized Texinfo �le that lacks `Next', `Previous' and `Up' pointers. Thus, if you can be surethat your Texinfo �le will be formatted with makeinfo, you have no need for the `updatenode' commands. (See Chapter 20 [Creating an Info File], page 143, for more informa-tion about makeinfo.) However, both makeinfo and the texinfo-format-... commandsrequire that you insert menus in the �le.
2.4.2 Other Updating Commands

In addition to the �ve major updating commands, Texinfo mode possesses several lessfrequently used updating commands:
M-x texinfo-insert-node-linesInsert @node lines before the @chapter, @section, and other sectioning com-mands wherever they are missing throughout a region in a Texinfo �le.With an argument (C-u as pre�x argument, if interactive), the texinfo-insert-node-lines command not only inserts @node lines but also inserts the

20 Texinfo 3.12

chapter or section titles as the names of the corresponding nodes. In addition,it inserts the titles as node names in pre-existing @node lines that lack names.Since node names should be more concise than section or chapter titles, youmust manually edit node names so inserted.For example, the following marks a whole bu�er as a region and inserts @nodelines and titles throughout:C-x h C-u M-x texinfo-insert-node-lines(Note that this command inserts titles as node names in @node lines; thetexinfo-start-menu-description command (see Section 2.2 [Inserting],page 14) inserts titles as descriptions in menu entries, a di�erent action.However, in both cases, you need to edit the inserted text.)
M-x texinfo-multiple-files-updateUpdate nodes and menus in a document built from several separate �les. With

C-u as a pre�x argument, create and insert a master menu in the outer �le.With a numeric pre�x argument, such as C-u 2, �rst update all the menusand all the `Next', `Previous', and `Up' pointers of all the included �les beforecreating and inserting a master menu in the outer �le. The texinfo-multiple-files-update command is described in the appendix on @include �les. SeeSection E.2 [texinfo-multiple-files-update], page 183.
M-x texinfo-indent-menu-descriptionIndent every description in the menu following point to the speci�ed column.You can use this command to give yourself more space for descriptions. With anargument (C-u as pre�x argument, if interactive), the texinfo-indent-menu-description command indents every description in every menu in the region.However, this command does not indent the second and subsequent lines of amulti-line description.
M-x texinfo-sequential-node-updateInsert the names of the nodes immediately following and preceding the currentnode as the `Next' or `Previous' pointers regardless of those nodes' hierarchicallevel. This means that the `Next' node of a subsection may well be the nextchapter. Sequentially ordered nodes are useful for novels and other documentsthat you read through sequentially. (However, in Info, the g * command lets youlook through the �le sequentially, so sequentially ordered nodes are not strictlynecessary.) With an argument (pre�x argument, if interactive), the texinfo-sequential-node-update command sequentially updates all the nodes in theregion.
2.5 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo �le forInfo. Often, when you are writing a document, you want to format only part of a �le|thatis, a region.You can use either the texinfo-format-region or the makeinfo-region commandto format a region:

Chapter 2: Using Texinfo Mode 21

C-c C-e C-r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-regionFormat the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer commandto format a whole bu�er:
C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-bufferFormat the current bu�er for Info.

For example, after writing a Texinfo �le, you can type the following:C-u C-c C-u mor C-u M-x texinfo-master-menuThis updates all the nodes and menus. Then type the following to create an Info �le:C-c C-m C-bor M-x makeinfo-bufferFor TEX or the Info formatting commands to work, the �le must include a line thathas @setfilename in its header.See Chapter 20 [Create an Info File], page 143, for details about Info formatting.
2.6 Formatting and Printing

Typesetting and printing a Texinfo �le is a multi-step process in which you �rst createa �le for printing (called a DVI �le), and then print the �le. Optionally, you may alsocreate indices. To do this, you must run the texindex command after �rst running thetex typesetting command; and then you must run the tex command again. Or else runthe texi2dvi command which automatically creates indices as needed (see Section 19.2[Format with texi2dvi], page 136).Often, when you are writing a document, you want to typeset and print only partof a �le to see what it will look like. You can use the texinfo-tex-region and relatedcommands for this purpose. Use the texinfo-tex-buffer command to format all of abu�er.
C-c C-t C-b
M-x texinfo-tex-bufferRun texi2dvi on the bu�er. In addition to running TEX on the bu�er, thiscommand automatically creates or updates indices as needed.
C-c C-t C-r
M-x texinfo-tex-regionRun TEX on the region.

22 Texinfo 3.12

C-c C-t C-i
M-x texinfo-texindexRun texindex to sort the indices of a Texinfo �le formatted with texinfo-tex-region. The texinfo-tex-region command does not run texindex au-tomatically; it only runs the tex typesetting command. You must run thetexinfo-tex-region command a second time after sorting the raw index �leswith the texindex command. (Usually, you do not format an index whenyou format a region, only when you format a bu�er. Now that the texi2dvicommand exists, there is little or no need for this command.)
C-c C-t C-p
M-x texinfo-tex-printPrint the �le (or the part of the �le) previously formatted with texinfo-tex-buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the �le must start with a`\input texinfo' line and must include an @settitle line. The �le must end with @bye ona line by itself. (When you use texinfo-tex-region, you must surround the @settitleline with start-of-header and end-of-header lines.)
See Chapter 19 [Format/Print Hardcopy], page 135, for a description of the other TEXrelated commands, such as tex-show-print-queue.

2.7 Texinfo Mode Summary
In Texinfo mode, each set of commands has default keybindings that begin with thesame keys. All the commands that are custom-created for Texinfo mode begin with C-c.The keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the �rst letter of the@-command to be inserted. (It might make more sense mnemonically to use C-c C-i , for`custom insert', but C-c C-c is quick to type.)
C-c C-c c Insert `@code'.C-c C-c d Insert `@dfn'.C-c C-c e Insert `@end'.C-c C-c i Insert `@item'.C-c C-c n Insert `@node'.C-c C-c s Insert `@samp'.C-c C-c v Insert `@var'.C-c C-c { Insert braces.C-c C-c]C-c C-c } Move out of enclosing braces.
C-c C-c C-d Insert a node's section titlein the space for the descriptionin a menu entry line.

Chapter 2: Using Texinfo Mode 23

Show Structure

The texinfo-show-structure command is often used within a narrowed region.
C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to up-date every node and menu in a �le as well.
C-c C-u mM-x texinfo-master-menuCreate or update a master menu.
C-u C-c C-u m With C-u as a pre�x argument, �rstcreate or update all nodes and regularmenus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n fortexinfo-update-node or C-e for texinfo-every-node-update.
C-c C-u C-n Update a node.C-c C-u C-e Update every node in the bu�er.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-mfor texinfo-make-menu or C-a for texinfo-all-menus-update. To update both nodes and menus atthe same time, precede C-c C-u C-a with C-u.
C-c C-u C-m Make or update a menu.
C-c C-u C-a Make or update allmenus in a bu�er.
C-u C-c C-u C-a With C-u as a pre�x argument,�rst create or update all nodes andthen create or update all menus.

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing
C-c C-e and then either C-r for a region or C-b for the whole bu�er.The Info formatting commands that are written in C and based on the makeinfoprogram are invoked by typing C-c C-m and then either C-r for a region or C-b for thewhole bu�er.Use the texinfo-format... commands:

C-c C-e C-r Format the region.C-c C-e C-b Format the bu�er.

24 Texinfo 3.12

Use makeinfo:C-c C-m C-r Format the region.C-c C-m C-b Format the bu�er.C-c C-m C-l Recenter the makeinfo output bu�er.C-c C-m C-k Kill the makeinfo formatting job.
Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and thenanother control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,and so on.C-c C-t C-r Run TEX on the region.C-c C-t C-b Run texi2dvi on the bu�er.C-c C-t C-i Run texindex.C-c C-t C-p Print the DVI �le.C-c C-t C-q Show the print queue.C-c C-t C-d Delete a job from the print queue.C-c C-t C-k Kill the current TEX formatting job.C-c C-t C-x Quit a currently stopped TEX formatting job.C-c C-t C-l Recenter the output bu�er.
Other Updating Commands

The `other updating commands' do not have standard keybindings because they arerarely used.M-x texinfo-insert-node-linesInsert missing @node lines in region.With C-u as a pre�x argument,use section titles as node names.
M-x texinfo-multiple-files-updateUpdate a multi-�le document.With C-u 2 as a pre�x argument,create or update all nodes and menusin all included �les �rst.
M-x texinfo-indent-menu-descriptionIndent descriptions.
M-x texinfo-sequential-node-updateInsert node pointers in strict sequence.

Chapter 3: Beginning a Texinfo File 25

3 Beginning a Texinfo File

Certain pieces of information must be provided at the beginning of a Texinfo �le, suchas the name of the �le and the title of the document.
Generally, the beginning of a Texinfo �le has four parts:

1. The header, delimited by special comment lines, that includes the commands for namingthe Texinfo �le and telling TEX what de�nitions �le to use when processing the Texinfo�le.
2. A short statement of what the �le is about, with a copyright notice and copying permis-sions. This is enclosed in @ifinfo and @end ifinfo commands so that the formattersplace it only in the Info �le.
3. A title page and copyright page, with a copyright notice and copying permissions.This is enclosed between @titlepage and @end titlepage commands. The title andcopyright page appear only in the printed manual.
4. The `Top' node that contains a menu for the whole Info �le. The contents of this nodeappear only in the Info �le.

Also, optionally, you may include the copying conditions for a program and a warrantydisclaimer. The copying section will be followed by an introduction or else by the �rstchapter of the manual.
Since the copyright notice and copying permissions for the Texinfo document (in con-trast to the copying permissions for a program) are in parts that appear only in the Info�le or only in the printed manual, this information must be given twice.

3.1 Sample Texinfo File Beginning
The following sample shows what is needed.
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename name-of-info-�le@settitle name-of-manual@setchapternewpage odd@c %**end of header
@ifinfoThis file documents ...
Copyright year copyright-owner

Permission is granted to ...@end ifinfo
@c This title page illustrates only one of the@c two methods of forming a title page.

26 Texinfo 3.12

@titlepage@title name-of-manual-when-printed@subtitle subtitle-if-any@subtitle second-subtitle@author author

@c The following two commands@c start the copyright page.@page@vskip 0pt plus 1filllCopyright @copyright{} year copyright-owner

Published by ...
Permission is granted to ...@end titlepage
@node Top, Overview, , (dir)
@ifinfoThis document describes ...
This document applies to version ...of the program named ...@end ifinfo
@menu* Copying:: Your rights and freedoms.* First Chapter:: Getting started ...* Second Chapter::@end menu
@node First Chapter, Second Chapter, top, top@comment node-name, next, previous, up@chapter First Chapter@cindex Index entry for First Chapter

3.2 The Texinfo File Header
Texinfo �les start with at least three lines that provide Info and TEX with necessaryinformation. These are the \input texinfo line, the @settitle line, and the @setfilenameline. If you want to run TEX on just a part of the Texinfo File, you must write the @settitleand @setfilename lines between start-of-header and end-of-header lines.Thus, the beginning of a Texinfo �le looks like this:\input texinfo @c -*-texinfo-*-@setfilename sample.info@settitle Sample Documentor else like this:

Chapter 3: Beginning a Texinfo File 27

\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Document@c %**end of header
3.2.1 The First Line of a Texinfo File

Every Texinfo �le that is to be the top-level input to TEX must begin with a line thatlooks like this:\input texinfo @c -*-texinfo-*-This line serves two functions:1. When the �le is processed by TEX, the `\input texinfo' command tells TEX toload the macros needed for processing a Texinfo �le. These are in a �le called`texinfo.tex', which is usually located in the `/usr/lib/tex/macros' directory. TEXuses the backslash, `\', to mark the beginning of a command, just as Texinfo uses `@'.The `texinfo.tex' �le causes the switch from `\' to `@'; before the switch occurs, TEXrequires `\', which is why it appears at the beginning of the �le.2. When the �le is edited in GNU Emacs, the `-*-texinfo-*-' mode speci�cation tellsEmacs to use Texinfo mode.
3.2.2 Start of Header

Write a start-of-header line on the second line of a Texinfo �le. Follow the start-of-header line with @setfilename and @settitle lines and, optionally, with other commandlines, such as @smallbook or @footnotestyle; and then by an end-of-header line (seeSection 3.2.7 [End of Header], page 30).With these lines, you can format part of a Texinfo �le for Info or typeset part forprinting.A start-of-header line looks like this:@c %**start of headerThe odd string of characters, `%**', is to ensure that no other comment is accidentallytaken for a start-of-header line.
3.2.3 @setfilename

In order to serve as the primary input �le for either makeinfo or TEX, a Texinfo �lemust contain a line that looks like this:@setfilename info-�le-nameWrite the @setfilename command at the beginning of a line and follow it on the sameline by the Info �le name. Do not write anything else on the line; anything on the lineafter the command is considered part of the �le name, including what would otherwise bea comment.The @setfilename line speci�es the name of the Info �le to be generated. This nameshould be di�erent from the name of the Texinfo �le. There are two conventions for choosing

28 Texinfo 3.12

the name: you can either remove the `.texi' extension from the input �le name, or replaceit with the `.info' extension.Some operating systems cannot handle long �le names. You can run into a problemeven when the �le name you specify is itself short enough. This occurs because the Infoformatters split a long Info �le into short indirect sub�les, and name them by appending`-1', `-2', . . . , `-10', `-11', and so on, to the original �le name. (See Section 20.7 [TagFiles and Split Files], page 148.) The sub�le name `texinfo.info-10', for example, is toolong for some systems; so the Info �le name for this document is `texinfo' rather than`texinfo.info'.The Info formatting commands ignore everything written before the @setfilenameline, which is why the very �rst line of the �le (the \input line) does not show up in theoutput.The @setfilename line produces no output when you typeset a manual with TEX,but it nevertheless is essential: it opens the index, cross-reference, and other auxiliary �lesused by Texinfo, and also reads `texinfo.cnf' if that �le is present on your system (seeSection 19.8 [Preparing to Use TEX], page 139).
3.2.4 @settitle

In order to be made into a printed manual, a Texinfo �le must contain a line that lookslike this:
@settitle titleWrite the @settitle command at the beginning of a line and follow it on the same lineby the title. This tells TEX the title to use in a header or footer. Do not write anything elseon the line; anything on the line after the command is considered part of the title, includinga comment.Conventionally, when TEX formats a Texinfo �le for double-sided output, the title isprinted in the left-hand (even-numbered) page headings and the current chapter title isprinted in the right-hand (odd-numbered) page headings. (TEX learns the title of eachchapter from each @chapter command.) Page footers are not printed.Even if you are printing in a single-sided style, TEX looks for an @settitle commandline, in case you include the manual title in the heading.The @settitle command should precede everything that generates actual output inTEX.Although the title in the @settitle command is usually the same as the title on thetitle page, it does not a�ect the title as it appears on the title page. Thus, the two do notneed not match exactly; and the title in the @settitle command can be a shortened orexpanded version of the title as it appears on the title page. (See Section 3.4.1 [@titlepage],page 31.)TEX prints page headings only for that text that comes after the @end titlepagecommand in the Texinfo �le, or that comes after an @headings command that turns onheadings. (See Section 3.4.6 [The @headings Command], page 34, for more information.)You may, if you wish, create your own, customized headings and footings. See Appen-dix F [Page Headings], page 187, for a detailed discussion of this process.

Chapter 3: Beginning a Texinfo File 29

3.2.5 @setchapternewpage

In a book or a manual, text is usually printed on both sides of the paper, chapters starton right-hand pages, and right-hand pages have odd numbers. But in short reports, textoften is printed only on one side of the paper. Also in short reports, chapters sometimesdo not start on new pages, but are printed on the same page as the end of the precedingchapter, after a small amount of vertical whitespace.
You can use the @setchapternewpage command with various arguments to specifyhow TEX should start chapters and whether it should typeset pages for printing on one orboth sides of the paper (single-sided or double-sided printing).
Write the @setchapternewpage command at the beginning of a line followed by itsargument.
For example, you would write the following to cause each chapter to start on a freshodd-numbered page:
@setchapternewpage odd

You can specify one of three alternatives with the @setchapternewpage command:
@setchapternewpage offCause TEX to typeset a new chapter on the same page as the last chapter, afterskipping some vertical whitespace. Also, cause TEX to format page headers forsingle-sided printing. (You can override the headers format with the @headingsdouble command; see Section 3.4.6 [The @headings Command], page 34.)
@setchapternewpage onCause TEX to start new chapters on new pages and to typeset page headers forsingle-sided printing. This is the form most often used for short reports.This alternative is the default.
@setchapternewpage oddCause TEX to start new chapters on new, odd-numbered pages (right-handedpages) and to typeset for double-sided printing. This is the form most oftenused for books and manuals.
Texinfo does not have an @setchapternewpage even command.
(You can countermand or modify an @setchapternewpage command with an @headingscommand. See Section 3.4.6 [The @headings Command], page 34.)

At the beginning of a manual or book, pages are not numbered|for example, the titleand copyright pages of a book are not numbered. By convention, table of contents pagesare numbered with roman numerals and not in sequence with the rest of the document.
Since an Info �le does not have pages, the @setchapternewpage command has no e�ecton it.
Usually, you do not write an @setchapternewpage command for single-sided printing,but accept the default which is to typeset for single-sided printing and to start new chapterson new pages. Usually, you write an @setchapternewpage odd command for double-sidedprinting.

30 Texinfo 3.12

3.2.6 Paragraph Indenting

The Info formatting commands may insert spaces at the beginning of the �rst line ofeach paragraph, thereby indenting that paragraph. You can use the @paragraphindentcommand to specify the indentation. Write an @paragraphindent command at the begin-ning of a line followed by either `asis' or a number. The template is:@paragraphindent indentThe Info formatting commands indent according to the value of indent:
� If the value of indent is `asis', the Info formatting commands do not change the existingindentation.
� If the value of indent is zero, the Info formatting commands delete existing indentation.
� If the value of indent is greater than zero, the Info formatting commands indent theparagraph by that number of spaces.

The default value of indent is `asis'.Write the @paragraphindent command before or shortly after the end-of-header lineat the beginning of a Texinfo �le. (If you write the command between the start-of-headerand end-of-header lines, the region formatting commands indent paragraphs as speci�ed.)A peculiarity of the texinfo-format-buffer and texinfo-format-region commandsis that they do not indent (nor �ll) paragraphs that contain @w or @* commands. SeeAppendix H [Re�lling Paragraphs], page 199, for a detailed description of what goes on.
3.2.7 End of Header

Follow the header lines with an end-of-header line. An end-of-header line looks likethis: @c %**end of headerIf you include the @setchapternewpage command between the start-of-header andend-of-header lines, TEX will typeset a region as that command speci�es. Similarly, if youinclude an @smallbook command between the start-of-header and end-of-header lines, TEXwill typeset a region in the \small" book format.See Section 3.2.2 [Start of Header], page 27.
3.3 Summary and Copying Permissions for Info

The title page and the copyright page appear only in the printed copy of the manual;therefore, the same information must be inserted in a section that appears only in the Info�le. This section usually contains a brief description of the contents of the Info �le, acopyright notice, and copying permissions.The copyright notice should read:Copyright year copyright-ownerand be put on a line by itself.Standard text for the copyright permissions is contained in an appendix to this manual;see Section D.1 [`ifinfo' Copying Permissions], page 181, for the complete text.

Chapter 3: Beginning a Texinfo File 31

The permissions text appears in an Info �le before the �rst node. This mean thata reader does not see this text when reading the �le using Info, except when using theadvanced Info command g * .
3.4 The Title and Copyright Pages

A manual's name and author are usually printed on a title page. Sometimes copyrightinformation is printed on the title page as well; more often, copyright information is printedon the back of the title page.The title and copyright pages appear in the printed manual, but not in the Info �le.Because of this, it is possible to use several slightly obscure TEX typesetting commandsthat cannot be used in an Info �le. In addition, this part of the beginning of a Texinfo �lecontains the text of the copying permissions that will appear in the printed manual.See Section D.2 [Titlepage Copying Permissions], page 182, for the standard text forthe copyright permissions.
3.4.1 @titlepage

Start the material for the title page and following copyright page with @titlepage ona line by itself and end it with @end titlepage on a line by itself.The @end titlepage command starts a new page and turns on page numbering. (SeeAppendix F [Page Headings], page 187, for details about how to generate page headings.)All the material that you want to appear on unnumbered pages should be put betweenthe @titlepage and @end titlepage commands. By using the @page command you canforce a page break within the region delineated by the @titlepage and @end titlepagecommands and thereby create more than one unnumbered page. This is how the copyrightpage is produced. (The @titlepage command might perhaps have been better named the@titleandadditionalpages command, but that would have been rather long!)When you write a manual about a computer program, you should write the version ofthe program to which the manual applies on the title page. If the manual changes morefrequently than the program or is independent of it, you should also include an editionnumber1 for the manual. This helps readers keep track of which manual is for which versionof the program. (The `Top' node should also contain this information; see Section 5.3 [@top],page 44.)Texinfo provides two main methods for creating a title page. One method uses the@titlefont, @sp, and @center commands to generate a title page in which the words onthe page are centered.The second method uses the @title, @subtitle, and @author commands to create atitle page with black rules under the title and author lines and the subtitle text set
ushto the right hand side of the page. With this method, you do not specify any of the actualformatting of the title page. You specify the text you want, and Texinfo does the formatting.You may use either method.
1 We have found that it is helpful to refer to versions of manuals as `editions' and versions of programs

as `versions'; otherwise, we �nd we are liable to confuse each other in conversation by referring to both
the documentation and the software with the same words.

32 Texinfo 3.12

For extremely simple applications, Texinfo also provides a command @shorttitlepagewhich takes a single argument as the title. The argument is typeset on a page by itself andfollowed by a blank page.
3.4.2 @titlefont , @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for aprinted document. (This is the �rst of the two methods for creating a title page in Texinfo.)Use the @titlefont command to select a large font suitable for the title itself.For example:@titlefont{Texinfo}Use the @center command at the beginning of a line to center the remaining text onthat line. Thus,@center @titlefont{Texinfo}centers the title, which in this example is \Texinfo" printed in the title font.Use the @sp command to insert vertical space. For example:@sp 2This inserts two blank lines on the printed page. (See Section 14.4 [@sp], page 111, for moreinformation about the @sp command.)A template for this method looks like this:@titlepage@sp 10@center @titlefont{name-of-manual-when-printed}@sp 2@center subtitle-if-any@sp 2@center author...@end titlepageThe spacing of the example �ts an 8 1/2 by 11 inch manual.
3.4.3 @title , @subtitle , and @author

You can use the @title, @subtitle, and @author commands to create a title pagein which the vertical and horizontal spacing is done for you automatically. This contrastswith the method described in the previous section, in which the @sp command is needed toadjust vertical spacing.Write the @title, @subtitle, or @author commands at the beginning of a line followedby the title, subtitle, or author.The @title command produces a line in which the title is set
ush to the left-handside of the page in a larger than normal font. The title is underlined with a black rule.The @subtitle command sets subtitles in a normal-sized font
ush to the right-handside of the page.The @author command sets the names of the author or authors in a middle-sized font
ush to the left-hand side of the page on a line near the bottom of the title page. The

Chapter 3: Beginning a Texinfo File 33

names are underlined with a black rule that is thinner than the rule that underlines thetitle. (The black rule only occurs if the @author command line is followed by an @pagecommand line.)
There are two ways to use the @author command: you can write the name or nameson the remaining part of the line that starts with an @author command:
@author by Jane Smith and John Doe

or you can write the names one above each other by using two (or more) @author commands:
@author Jane Smith@author John Doe

(Only the bottom name is underlined with a black rule.)A template for this method looks like this:
@titlepage@title name-of-manual-when-printed@subtitle subtitle-if-any@subtitle second-subtitle@author author@page...@end titlepage

3.4.4 Copyright Page and Permissions

By international treaty, the copyright notice for a book should be either on the titlepage or on the back of the title page. The copyright notice should include the year followedby the name of the organization or person who owns the copyright.
When the copyright notice is on the back of the title page, that page is customarily notnumbered. Therefore, in Texinfo, the information on the copyright page should be within@titlepage and @end titlepage commands.
Use the @page command to cause a page break. To push the copyright notice and theother text on the copyright page towards the bottom of the page, you can write a somewhatmysterious line after the @page command that reads like this:
@vskip 0pt plus 1filll

This is a TEX command that is not supported by the Info formatting commands. The@vskip command inserts whitespace. The `0pt plus 1filll' means to put in zero pointsof mandatory whitespace, and as much optional whitespace as needed to push the followingtext to the bottom of the page. Note the use of three `l's in the word `filll'; this is thecorrect usage in TEX.
In a printed manual, the @copyright{} command generates a `c' inside a circle. (InInfo, it generates `(C)'.) The copyright notice itself has the following legally de�ned se-quence:
Copyright c
 year copyright-owner

It is customary to put information on how to get a manual after the copyright notice,followed by the copying permissions for the manual.

34 Texinfo 3.12

Note that permissions must be given here as well as in the summary segment within@ifinfo and @end ifinfo that immediately follows the header since this text appears onlyin the printed manual and the `ifinfo' text appears only in the Info �le.
See Appendix D [Sample Permissions], page 181, for the standard text.

3.4.5 Heading Generation

An @end titlepage command on a line by itself not only marks the end of the title andcopyright pages, but also causes TEX to start generating page headings and page numbers.
To repeat what is said elsewhere, Texinfo has two standard page heading formats, onefor documents which are printed on one side of each sheet of paper (single-sided printing),and the other for documents which are printed on both sides of each sheet (double-sidedprinting). (See Section 3.2.5 [@setchapternewpage], page 29.) You can specify these for-mats in di�erent ways:

� The conventional way is to write an @setchapternewpage command before the titlepage commands, and then have the @end titlepage command start generating pageheadings in the manner desired. (See Section 3.2.5 [@setchapternewpage], page 29.)
� Alternatively, you can use the @headings command to prevent page headings frombeing generated or to start them for either single or double-sided printing. (Writean @headings command immediately after the @end titlepage command. See Sec-tion 3.4.6 [The @headings Command], page 34, for more information.)
� Or, you may specify your own page heading and footing format. See Appendix F [PageHeadings], page 187, for detailed information about page headings and footings.

Most documents are formatted with the standard single-sided or double-sided format,using @setchapternewpage odd for double-sided printing and no @setchapternewpagecommand for single-sided printing.
3.4.6 The @headingsCommand

The @headings command is rarely used. It speci�es what kind of page headings andfootings to print on each page. Usually, this is controlled by the @setchapternewpagecommand. You need the @headings command only if the @setchapternewpage commanddoes not do what you want, or if you want to turn o� pre-de�ned page headings prior tode�ning your own. Write an @headings command immediately after the @end titlepagecommand.
You can use @headings as follows:

@headings offTurn o� printing of page headings.
@headings singleTurn on page headings appropriate for single-sided printing.
@headings doubleTurn on page headings appropriate for double-sided printing. The two com-mands, @headings on and @headings double, are synonymous.

Chapter 3: Beginning a Texinfo File 35

@headings singleafter@headings doubleafterTurn on single or double headings, respectively, after the current page isoutput.
@headings onTurn on page headings: single if `@setchapternewpage on', double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-mand to tell TEX to start a new chapter on the same page as the end of the last chapter.This command also causes TEX to typeset page headers for single-sided printing. To causeTEX to typeset for double sided printing, write @headings double after the @end titlepagecommand.
You can stop TEX from generating any page headings at all by writing @headings offon a line of its own immediately after the line containing the @end titlepage command,like this:
@end titlepage@headings off

The @headings off command overrides the @end titlepage command, which would oth-erwise cause TEX to print page headings.
You can also specify your own style of page heading and footing. See Appendix F [PageHeadings], page 187, for more information.

3.5 The `Top' Node and Master Menu
The `Top' node is the node from which you enter an Info �le.
A `Top' node should contain a brief description of the Info �le and an extensive, mastermenu for the whole Info �le. This helps the reader understand what the Info �le is about.Also, you should write the version number of the program to which the Info �le applies; or,at least, the edition number.
The contents of the `Top' node should appear only in the Info �le; none of it shouldappear in printed output, so enclose it between @ifinfo and @end ifinfo commands. (TEXdoes not print either an @node line or a menu; they appear only in Info; strictly speaking,you are not required to enclose these parts between @ifinfo and @end ifinfo, but it issimplest to do so. See Chapter 17 [Conditionally Visible Text], page 127.)
Sometimes, you will want to place an @top sectioning command line containing thetitle of the document immediately after the @node Top line (see Section 6.2.5 [The @topSectioning Command], page 53, for more information).
For example, the beginning of the Top node of this manual contains an @top sectioningcommand, a short description, and edition and version information. It looks like this:

36 Texinfo 3.12

...@end titlepage
@ifinfo@node Top, Copying, , (dir)@top Texinfo
Texinfo is a documentation system...
This is edition......@end ifinfo
@menu* Copying:: Texinfo is freelyredistributable.* Overview:: What is Texinfo?...@end menu

In a `Top' node, the `Previous', and `Up' nodes usually refer to the top level directory ofthe whole Info system, which is called `(dir)'. The `Next' node refers to the �rst node thatfollows the main or master menu, which is usually the copying permissions, introduction,or �rst chapter.
3.5.1 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a �le.
A master menu is enclosed in @menu and @end menu commands and does not appear inthe printed document.
Generally, a master menu is divided into parts.

� The �rst part contains the major nodes in the Texinfo �le: the nodes for the chapters,chapter-like sections, and the appendices.
� The second part contains nodes for the indices.
� The third and subsequent parts contain a listing of the other, lower level nodes, oftenordered by chapter. This way, rather than go through an intermediary menu, aninquirer can go directly to a particular node when searching for speci�c information.These menu items are not required; add them if you think they are a convenience. Ifyou do use them, put @detailmenu before the �rst one, and @end detailmenu afterthe last; otherwise, makeinfo will get confused.

Each section in the menu can be introduced by a descriptive line. So long as the linedoes not begin with an asterisk, it will not be treated as a menu entry. (See Section 7.1[Writing a Menu], page 55, for more information.)
For example, the master menu for this manual looks like the following (but has manymore entries):

Chapter 3: Beginning a Texinfo File 37

@menu* Copying:: Texinfo is freelyredistributable.* Overview:: What is Texinfo?* Texinfo Mode:: Special features in GNU Emacs.......* Command and Variable Index::An entry for each @-command.* Concept Index:: An entry for each concept.
@detailmenu--- The Detailed Node Listing ---
Overview of Texinfo
* Info Files:: What is an Info file?* Printed Manuals:: Characteristics ofa printed manual.......
Using Texinfo Mode
* Info on a Region:: Formatting part of a filefor Info.......@end detailmenu@end menu

3.6 Software Copying Permissions
If the Texinfo �le has a section containing the \General Public License" and the dis-tribution information and a warranty disclaimer for the software that is documented, thissection usually follows the `Top' node. The General Public License is very important toProject GNU software. It ensures that you and others will continue to have a right to useand share the software.The copying and distribution information and the disclaimer are followed by an intro-duction or else by the �rst chapter of the manual.Although an introduction is not a required part of a Texinfo �le, it is very helpful. Ide-ally, it should state clearly and concisely what the �le is about and who would be interestedin reading it. In general, an introduction would follow the licensing and distribution infor-mation, although sometimes people put it earlier in the document. Usually, an introductionis put in an @unnumbered section. (See Section 5.5 [The @unnumbered and @appendixCommands], page 45.)

38 Texinfo 3.12

Chapter 4: Ending a Texinfo File 39

4 Ending a Texinfo File

The end of a Texinfo �le should include the commands that create indices and generatedetailed and summary tables of contents. And it must include the @bye command thatmarks the last line processed by TEX.
For example:
@node Concept Index, , Variables Index, Top@c node-name, next, previous, up@unnumbered Concept Index
@printindex cp
@contents@bye

4.1 Index Menus and Printing an Index
To print an index means to include it as part of a manual or Info �le. This doesnot happen automatically just because you use @cindex or other index-entry generatingcommands in the Texinfo �le; those just cause the raw data for the index to be accumulated.To generate an index, you must include the @printindex command at the place in thedocument where you want the index to appear. Also, as part of the process of creating aprinted manual, you must run a program called texindex (see Chapter 19 [Format/PrintHardcopy], page 135) to sort the raw data to produce a sorted index �le. The sorted index�le is what is actually used to print the index.
Texinfo o�ers six di�erent types of prede�ned index: the concept index, the functionindex, the variables index, the keystroke index, the program index, and the data type index(see Section 12.2 [Prede�ned Indices], page 93). Each index type has a two-letter name: `cp',`fn', `vr', `ky', `pg', and `tp'. You may merge indices, or put them into separate sections(see Section 12.4 [Combining Indices], page 95); or you may de�ne your own indices (seeSection 12.5 [De�ning New Indices], page 96).
The @printindex command takes a two-letter index name, reads the correspondingsorted index �le and formats it appropriately into an index.
The @printindex command does not generate a chapter heading for the index. Conse-quently, you should precede the @printindex command with a suitable section or chaptercommand (usually @unnumbered) to supply the chapter heading and put the index into thetable of contents. Precede the @unnumbered command with an @node line.
For example:
@node Variable Index, Concept Index, Function Index, Top@comment node-name, next, previous, up@unnumbered Variable Index
@printindex vr

40 Texinfo 3.12

@node Concept Index, , Variable Index, Top@comment node-name, next, previous, up@unnumbered Concept Index
@printindex cp
@summarycontents@contents@bye

(Readers often prefer that the concept index come last in a book, since that makes it easiestto �nd.)
4.2 Generating a Table of Contents

The @chapter, @section, and other structuring commands supply the information tomake up a table of contents, but they do not cause an actual table to appear in the manual.To do this, you must use the @contents and @summarycontents commands:
@contents Generate a table of contents in a printed manual, including all chapters, sec-tions, subsections, etc., as well as appendices and unnumbered chapters. (Head-ings generated by the @heading series of commands do not appear in the tableof contents.) The @contents command should be written on a line by itself.
@shortcontents@summarycontents(@summarycontents is a synonym for @shortcontents; the two commands areexactly the same.)

Generate a short or summary table of contents that lists only the chapters(and appendices and unnumbered chapters). Omit sections, subsections andsubsubsections. Only a long manual needs a short table of contents in additionto the full table of contents.
Write the @shortcontents command on a line by itself right before the@contents command.

The table of contents commands automatically generate a chapter-like heading at thetop of the �rst table of contents page. Write the table of contents commands at the veryend of a Texinfo �le, just before the @bye command, following any index sections|anythingin the Texinfo �le after the table of contents commands will be omitted from the table ofcontents.
When you print a manual with a table of contents, the table of contents are printedlast and numbered with roman numerals. You need to place those pages in their properplace, after the title page, yourself. (This is the only collating you need to do for a printedmanual. The table of contents is printed last because it is generated after the rest of themanual is typeset.)
Here is an example of where to write table of contents commands:

Chapter 4: Ending a Texinfo File 41

indices...@shortcontents@contents@byeSince an Info �le uses menus instead of tables of contents, the Info formatting commandsignore the @contents and @shortcontents commands.
4.3 @byeFile Ending

An @bye command terminates TEX or Info formatting. None of the formatting com-mands see any of the �le following @bye. The @bye command should be on a line by itself.If you wish, you may follow the @bye line with notes. These notes will not be formattedand will not appear in either Info or a printed manual; it is as if text after @bye were within@ignore . . . @end ignore. Also, you may follow the @bye line with a local variables list.See Section 19.6 [Using Local Variables and the Compile Command], page 138, for moreinformation.

42 Texinfo 3.12

Chapter 5: Chapter Structuring 43

5 Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters,sections, subsections, and subsubsections. These commands generate large headings; theyalso provide information for the table of contents of a printed manual (see Section 4.2[Generating a Table of Contents], page 40).The chapter structuring commands do not create an Info node structure, so normallyyou should put an @node command immediately before each chapter structuring command(see Chapter 6 [Nodes], page 49). The only time you are likely to use the chapter structuringcommands without using the node structuring commands is if you are writing a documentthat contains no cross references and will never be transformed into Info format.It is unlikely that you will ever write a Texinfo �le that is intended only as an Info�le and not as a printable document. If you do, you might still use chapter structuringcommands to create a heading at the top of each node|but you don't need to.
5.1 Tree Structure of Sections

A Texinfo �le is usually structured like a book with chapters, sections, subsections,and the like. This structure can be visualized as a tree (or rather as an upside-down tree)with the root at the top and the levels corresponding to chapters, sections, subsection, andsubsubsections.Here is a diagram that shows a Texinfo �le with three chapters, each of which has twosections. Top|-------------------------------------| | |Chapter 1 Chapter 2 Chapter 3| | |-------- -------- --------| | | | | |Section Section Section Section Section Section1.1 1.2 2.1 2.2 3.1 3.2
In a Texinfo �le that has this structure, the beginning of Chapter 2 looks like this:@node Chapter 2, Chapter 3, Chapter 1, top@chapter Chapter 2The chapter structuring commands are described in the sections that follow; the @nodeand @menu commands are described in following chapters. (See Chapter 6 [Nodes], page 49,and see Chapter 7 [Menus], page 55.)

5.2 Types of Structuring Commands
The chapter structuring commands fall into four groups or series, each of which con-tains structuring commands corresponding to the hierarchical levels of chapters, sections,subsections, and subsubsections.

44 Texinfo 3.12

The four groups are the @chapter series, the @unnumbered series, the @appendix series,and the @heading series.
Each command produces titles that have a di�erent appearance on the printed page orInfo �le; only some of the commands produce titles that are listed in the table of contentsof a printed book or manual.

� The @chapter and @appendix series of commands produce numbered or lettered entriesboth in the body of a printed work and in its table of contents.
� The @unnumbered series of commands produce unnumbered entries both in the bodyof a printed work and in its table of contents. The @top command, which has a specialuse, is a member of this series (see Section 5.3 [@top], page 44).
� The @heading series of commands produce unnumbered headings that do not appearin a table of contents. The heading commands never start a new page.
� The @majorheading command produces results similar to using the @chapheadingcommand but generates a larger vertical whitespace before the heading.
� When an @setchapternewpage command says to do so, the @chapter, @unnumbered,and @appendix commands start new pages in the printed manual; the @heading com-mands do not.

Here are the four groups of chapter structuring commands:
No new pagesNumbered Unnumbered Lettered and numbered UnnumberedIn contents In contents In contents Not in contents

@top @majorheading@chapter @unnumbered @appendix @chapheading@section @unnumberedsec @appendixsec @heading@subsection @unnumberedsubsec @appendixsubsec @subheading@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading
5.3 @top

The @top command is a special sectioning command that you use only after an `@nodeTop' line at the beginning of a Texinfo �le. The @top command tells the makeinfo formatterwhich node is the `Top' node. It has the same typesetting e�ect as @unnumbered (seeSection 5.5 [@unnumbered], page 45). For detailed information, see Section 6.2.5 [The @topCommand], page 53.
5.4 @chapter

@chapter identi�es a chapter in the document. Write the command at the beginningof a line and follow it on the same line by the title of the chapter.
For example, this chapter in this manual is entitled \Chapter Structuring"; the@chapter line looks like this:

Chapter 5: Chapter Structuring 45

@chapter Chapter StructuringIn TEX, the @chapter command creates a chapter in the document, specifying thechapter title. The chapter is numbered automatically.In Info, the @chapter command causes the title to appear on a line by itself, with a lineof asterisks inserted underneath. Thus, in Info, the above example produces the followingoutput:Chapter Structuring*******************Texinfo also provides a command @centerchap, which is analogous to @unnumbered,but centers its argument in the printed output. This kind of stylistic choice is not usuallyo�ered by Texinfo.
5.5 @unnumbered, @appendix

Use the @unnumbered command to create a chapter that appears in a printed manualwithout chapter numbers of any kind. Use the @appendix command to create an appendixin a printed manual that is labelled by letter instead of by number.For Info �le output, the @unnumbered and @appendix commands are equivalent to@chapter: the title is printed on a line by itself with a line of asterisks underneath. (SeeSection 5.4 [@chapter], page 44.)To create an appendix or an unnumbered chapter, write an @appendix or @unnumberedcommand at the beginning of a line and follow it on the same line by the title, as you wouldif you were creating a chapter.
5.6 @majorheading, @chapheading

The @majorheading and @chapheading commands put chapter-like headings in thebody of a document.However, neither command causes TEX to produce a numbered heading or an entry inthe table of contents; and neither command causes TEX to start a new page in a printedmanual.In TEX, an @majorheading command generates a larger vertical whitespace before theheading than an @chapheading command but is otherwise the same.In Info, the @majorheading and @chapheading commands are equivalent to @chapter:the title is printed on a line by itself with a line of asterisks underneath. (See Section 5.4[@chapter], page 44.)
5.7 @section

In a printed manual, an @section command identi�es a numbered section within achapter. The section title appears in the table of contents. In Info, an @section commandprovides a title for a segment of text, underlined with `='.This section is headed with an @section command and looks like this in the Texinfo�le:

46 Texinfo 3.12

@section @code{@@section}
To create a section, write the @section command at the beginning of a line and followit on the same line by the section title.
Thus,
@section This is a section

produces
This is a section=================

in Info.
5.8 @unnumberedsec, @appendixsec, @heading

The @unnumberedsec, @appendixsec, and @heading commands are, respectively, theunnumbered, appendix-like, and heading-like equivalents of the @section command. (SeeSection 5.7 [@section], page 45.)
@unnumberedsecThe @unnumberedsec command may be used within an unnumbered chapter orwithin a regular chapter or appendix to provide an unnumbered section.
@appendixsec@appendixsection@appendixsection is a longer spelling of the @appendixsec command; the twoare synonymous.

Conventionally, the @appendixsec or @appendixsection command is used onlywithin appendices.
@heading You may use the @heading command anywhere you wish for a section-styleheading that will not appear in the table of contents.
5.9 The @subsection Command

Subsections are to sections as sections are to chapters. (See Section 5.7 [@section],page 45.) In Info, subsection titles are underlined with `-'. For example,
@subsection This is a subsection

produces
This is a subsection--------------------

In a printed manual, subsections are listed in the table of contents and are numberedthree levels deep.

Chapter 5: Chapter Structuring 47

5.10 The @subsection-like Commands
The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsectioncommand. (See Section 5.9 [@subsection], page 46.)
In Info, the @subsection-like commands generate a title underlined with hyphens. Ina printed manual, an @subheading command produces a heading like that of a subsectionexcept that it is not numbered and does not appear in the table of contents. Similarly, an@unnumberedsubsec command produces an unnumbered heading like that of a subsectionand an @appendixsubsec command produces a subsection-like heading labelled with aletter and numbers; both of these commands produce headings that appear in the table ofcontents.

5.11 The `subsub' Commands
The fourth and lowest level sectioning commands in Texinfo are the `subsub' commands.They are:

@subsubsectionSubsubsections are to subsections as subsections are to sections. (See Section 5.9[@subsection], page 46.) In a printed manual, subsubsection titles appear inthe table of contents and are numbered four levels deep.
@unnumberedsubsubsecUnnumbered subsubsection titles appear in the table of contents of a printedmanual, but lack numbers. Otherwise, unnumbered subsubsections are thesame as subsubsections. In Info, unnumbered subsubsections look exactly likeordinary subsubsections.
@appendixsubsubsecConventionally, appendix commands are used only for appendices and are let-tered and numbered appropriately in a printed manual. They also appear in thetable of contents. In Info, appendix subsubsections look exactly like ordinarysubsubsections.
@subsubheadingThe @subsubheading command may be used anywhere that you need a smallheading that will not appear in the table of contents. In Info, subsubheadingslook exactly like ordinary subsubsection headings.

In Info, `subsub' titles are underlined with periods. For example,
@subsubsection This is a subsubsection

produces
This is a subsubsection.......................

48 Texinfo 3.12

5.12 @raisesections and @lowersections

The @raisesections and @lowersections commands raise and lower the hierarchicallevel of chapters, sections, subsections and the like. The @raisesections command changessections to chapters, subsections to sections, and so on. The @lowersections commandchanges chapters to sections, sections to subsections, and so on.An @lowersections command is useful if you wish to include text that is written asan outer or standalone Texinfo �le in another Texinfo �le as an inner, included �le. If youwrite the command at the beginning of the �le, all your @chapter commands are formattedas if they were @section commands, all your @section command are formatted as if theywere @subsection commands, and so on.@raisesections raises a command one level in the chapter structuring hierarchy:Change To
@subsection @section,@section @chapter,@heading @chapheading,etc.

@lowersections lowers a command one level in the chapter structuring hierarchy:Change To
@chapter @section,@subsection @subsubsection,@heading @subheading,etc.An @raisesections or @lowersections command changes only those structuringcommands that follow the command in the Texinfo �le. Write an @raisesections or@lowersections command on a line of its own.An @lowersections command cancels an @raisesections command, and vice versa.Typically, the commands are used like this:@lowersections@include somefile.texi@raisesectionsWithout the @raisesections, all the subsequent sections in your document will belowered.Repeated use of the commands continue to raise or lower the hierarchical level a stepat a time.An attempt to raise above `chapters' reproduces chapter commands; an attempt tolower below `subsubsections' reproduces subsubsection commands.

Chapter 6: Nodes 49

6 Nodes

Nodes are the primary segments of a Texinfo �le. They do not themselves imposea hierarchic or any other kind of structure on a �le. Nodes contain node pointers thatname other nodes, and can contain menus which are lists of nodes. In Info, the movementcommands can carry you to a pointed-to node or to a node listed in a menu. Node pointersand menus provide structure for Info �les just as chapters, sections, subsections, and thelike, provide structure for printed books.
The node and menu commands and the chapter structuring commands are independentof each other:

� In Info, node and menu commands provide structure. The chapter structuring com-mands generate headings with di�erent kinds of underlining|asterisks for chapters,hyphens for sections, and so on; they do nothing else.
� In TEX, the chapter structuring commands generate chapter and section numbers andtables of contents. The node and menu commands provide information for cross refer-ences; they do nothing else.

You can use node pointers and menus to structure an Info �le any way you want; andyou can write a Texinfo �le so that its Info output has a di�erent structure than its printedoutput. However, most Texinfo �les are written such that the structure for the Info outputcorresponds to the structure for the printed output. It is not convenient to do otherwise.
Generally, printed output is structured in a tree-like hierarchy in which the chaptersare the major limbs from which the sections branch out. Similarly, node pointers and menusare organized to create a matching structure in the Info output.

6.1 Node and Menu Illustration
Here is a copy of the diagram shown earlier that illustrates a Texinfo �le with threechapters, each of which contains two sections.
Note that the \root" is at the top of the diagram and the \leaves" are at the bottom.This is how such a diagram is drawn conventionally; it illustrates an upside-down tree. Forthis reason, the root node is called the `Top' node, and `Up' node pointers carry you closerto the root.

Top|-------------------------------------| | |Chapter 1 Chapter 2 Chapter 3| | |-------- -------- --------| | | | | |Section Section Section Section Section Section1.1 1.2 2.1 2.2 3.1 3.2
Write the beginning of the node for Chapter 2 like this:

50 Texinfo 3.12

@node Chapter 2, Chapter 3, Chapter 1, top@comment node-name, next, previous, upThis @node line says that the name of this node is \Chapter 2", the name of the `Next'node is \Chapter 3", the name of the `Previous' node is \Chapter 1", and the name of the`Up' node is \Top".
Please Note: `Next' refers to the next node at the same hierarchical level in themanual, not necessarily to the next node within the Texinfo �le. In the Texinfo�le, the subsequent node may be at a lower level|a section-level node mayfollow a chapter-level node, and a subsection-level node may follow a section-level node. `Next' and `Previous' refer to nodes at the same hierarchical level.(The `Top' node contains the exception to this rule. Since the `Top' node is theonly node at that level, `Next' refers to the �rst following node, which is almostalways a chapter or chapter-level node.)To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (SeeChapter 7 [Menus], page 55.) You would write the menu just before the beginning ofSection 2.1, like this:@menu* Sect. 2.1:: Description of this section.* Sect. 2.2::@end menuWrite the node for Sect. 2.1 like this:@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2@comment node-name, next, previous, upIn Info format, the `Next' and `Previous' pointers of a node usually lead to other nodesat the same level|from chapter to chapter or from section to section (sometimes, as shown,the `Previous' pointer points up); an `Up' pointer usually leads to a node at the level above(closer to the `Top' node); and a `Menu' leads to nodes at a level below (closer to `leaves').(A cross reference can point to a node at any level; see Chapter 8 [Cross References],page 59.)Usually, an @node command and a chapter structuring command are used in sequence,along with indexing commands. (You may follow the @node line with a comment line thatreminds you which pointer is which.)Here is the beginning of the chapter in this manual called \Ending a Texinfo File". Thisshows an @node line followed by a comment line, an @chapter line, and then by indexinglines. @node Ending a File, Structuring, Beginning a File, Top@comment node-name, next, previous, up@chapter Ending a Texinfo File@cindex Ending a Texinfo file@cindex Texinfo file ending@cindex File ending

6.2 The @nodeCommand
A node is a segment of text that begins at an @node command and continues untilthe next @node command. The de�nition of node is di�erent from that for chapter or

Chapter 6: Nodes 51

section. A chapter may contain sections and a section may contain subsections; but a nodecannot contain subnodes; the text of a node continues only until the next @node commandin the �le. A node usually contains only one chapter structuring command, the one thatfollows the @node line. On the other hand, in printed output nodes are used only for crossreferences, so a chapter or section may contain any number of nodes. Indeed, a chapterusually contains several nodes, one for each section, subsection, and subsubsection.
To create a node, write an @node command at the beginning of a line, and follow itwith four arguments, separated by commas, on the rest of the same line. These argumentsare the name of the node, and the names of the `Next', `Previous', and `Up' pointers, inthat order. You may insert spaces before each pointer if you wish; the spaces are ignored.You must write the name of the node, and the names of the `Next', `Previous', and `Up'pointers, all on the same line. Otherwise, the formatters fail. (See Info �le `info', node`Top', for more information about nodes in Info.)
Usually, you write one of the chapter-structuring command lines immediately after an@node line|for example, an @section or @subsection line. (See Section 5.2 [Types ofStructuring Commands], page 43.)

Please note: The GNU Emacs Texinfo mode updating commands work onlywith Texinfo �les in which @node lines are followed by chapter structuring lines.See Section 2.4.1 [Updating Requirements], page 19.
TEX uses @node lines to identify the names to use for cross references. For this reason,you must write @node lines in a Texinfo �le that you intend to format for printing, even ifyou do not intend to format it for Info. (Cross references, such as the one at the end of thissentence, are made with @xref and its related commands; see Chapter 8 [Cross References],page 59.)
The name of a node identi�es the node. The pointers enable you to reach other nodesand consist of the names of those nodes.
Normally, a node's `Up' pointer contains the name of the node whose menu mentionsthat node. The node's `Next' pointer contains the name of the node that follows that nodein that menu and its `Previous' pointer contains the name of the node that precedes it inthat menu. When a node's `Previous' node is the same as its `Up' node, both node pointersname the same node.
Usually, the �rst node of a Texinfo �le is the `Top' node, and its `Up' and `Previous'pointers point to the `dir' �le, which contains the main menu for all of Info.
The `Top' node itself contains the main or master menu for the manual. Also, it ishelpful to include a brief description of the manual in the `Top' node. See Section 6.2.4[First Node], page 53, for information on how to write the �rst node of a Texinfo �le.

6.2.1 How to Write an @nodeLine

The easiest way to write an @node line is to write @node at the beginning of a line andthen the name of the node, like this:
@node node-name

If you are using GNU Emacs, you can use the update node commands provided byTexinfo mode to insert the names of the pointers; or you can leave the pointers out of the

52 Texinfo 3.12

Texinfo �le and let makeinfo insert node pointers into the Info �le it creates. (See Chapter 2[Texinfo Mode], page 13, and Section 6.3 [makeinfo Pointer Creation], page 54.)Alternatively, you can insert the `Next', `Previous', and `Up' pointers yourself. If youdo this, you may �nd it helpful to use the Texinfo mode keyboard command C-c C-c n.This command inserts `@node' and a comment line listing the names of the pointers in theirproper order. The comment line helps you keep track of which arguments are for whichpointers. This comment line is especially useful if you are not familiar with Texinfo.The template for a node line with `Next', `Previous', and `Up' pointers looks like this:@node node-name, next, previous, upIf you wish, you can ignore @node lines altogether in your �rst draft and then use thetexinfo-insert-node-lines command to create @node lines for you. However, we do notrecommend this practice. It is better to name the node itself at the same time that youwrite a segment so you can easily make cross references. A large number of cross referencesare an especially important feature of a good Info �le.After you have inserted an @node line, you should immediately write an @-commandfor the chapter or section and insert its name. Next (and this is important!), put in severalindex entries. Usually, you will �nd at least two and often as many as four or �ve ways ofreferring to the node in the index. Use them all. This will make it much easier for peopleto �nd the node.
6.2.2 @nodeLine Tips

Here are three suggestions:
� Try to pick node names that are informative but short.In the Info �le, the �le name, node name, and pointer names are all inserted on oneline, which may run into the right edge of the window. (This does not cause a problemwith Info, but is ugly.)
� Try to pick node names that di�er from each other near the beginnings of their names.This way, it is easy to use automatic name completion in Info.
� By convention, node names are capitalized just as they would be for section or chaptertitles|initial and signi�cant words are capitalized; others are not.

6.2.3 @nodeLine Requirements

Here are several requirements for @node lines:
� All the node names for a single Info �le must be unique.Duplicates confuse the Info movement commands. This means, for example, that ifyou end every chapter with a summary, you must name each summary node di�erently.You cannot just call each one \Summary". You may, however, duplicate the titles ofchapters, sections, and the like. Thus you can end each chapter in a book with a sectioncalled \Summary", so long as the node names for those sections are all di�erent.
� A pointer name must be the name of a node.The node to which a pointer points may come before or after the node containing thepointer.

Chapter 6: Nodes 53

� You cannot use any of the Texinfo @-commands in a node name; @-commands confuseInfo.Thus, the beginning of the section called @chapter looks like this:@node chapter, unnumbered & appendix, makeinfo top, Structuring@comment node-name, next, previous, up@section @code{@@chapter}@findex chapter� You cannot use commas or apostrophes within a node name; these confuse TEX or theInfo formatters.For example, the following is a section title:@code{@@unnumberedsec}, @code{@@appendixsec}, @code{@@heading}The corresponding node name is:unnumberedsec appendixsec heading
� Case is signi�cant.

6.2.4 The First Node

The �rst node of a Texinfo �le is the Top node, except in an included �le (see Appen-dix E [Include Files], page 183). The Top node contains the main or master menu for thedocument, and a short summary of the document (see Section 6.2.6 [Top Node Summary],page 54).The Top node (which must be named `top' or `Top') should have as its `Up' node thename of a node in another �le, where there is a menu that leads to this �le. Specify the�le name in parentheses. If the �le is to be installed directly in the Info directory �le, use`(dir)' as the parent of the Top node; this is short for `(dir)top', and speci�es the Topnode in the `dir' �le, which contains the main menu for the Info system as a whole. Forexample, the @node Top line of this manual looks like this:
@node Top, Copying, , (dir)(You can use the Texinfo updating commands or the makeinfo utility to insert these pointersautomatically.)Do not de�ne the `Previous' node of the Top node to be `(dir)', as it causes confusingbehavior for users: if you are in the Top node and hit hDELi to go backwards, you wind upin the middle of some other entry in the `dir' �le, which has nothing to do with what youwere reading.See Chapter 21 [Install an Info File], page 151, for more information about installingan Info �le in the `info' directory.

6.2.5 The @topSectioning Command

A special sectioning command, @top, has been created for use with the @node Top line.The @top sectioning command tells makeinfo that it marks the `Top' node in the �le. Itprovides the information that makeinfo needs to insert node pointers automatically. Writethe @top command at the beginning of the line immediately following the @node Top line.Write the title on the remaining part of the same line as the @top command.

54 Texinfo 3.12

In Info, the @top sectioning command causes the title to appear on a line by itself,with a line of asterisks inserted underneath.In TEX and texinfo-format-buffer, the @top sectioning command is merely a syn-onym for @unnumbered. Neither of these formatters require an @top command, and donothing special with it. You can use @chapter or @unnumbered after the @node Top linewhen you use these formatters. Also, you can use @chapter or @unnumbered when you usethe Texinfo updating commands to create or update pointers and menus.
6.2.6 The `Top' Node Summary

You can help readers by writing a summary in the `Top' node, after the @top line,before the main or master menu. The summary should brie
y describe the document. InInfo, this summary will appear just before the master menu. In a printed manual, thissummary will appear on a page of its own.If you do not want the summary to appear on a page of its own in a printed manual,you can enclose the whole of the `Top' node, including the @node Top line and the @topsectioning command line or other sectioning command line between @ifinfo and @endifinfo. This prevents any of the text from appearing in the printed output. (see Chapter 17[Conditionally Visible Text], page 127). You can repeat the brief description from the `Top'node within @iftex . . . @end iftex at the beginning of the �rst chapter, for those whoread the printed manual. This saves paper and may look neater.You should write the version number of the program to which the manual applies inthe summary. This helps the reader keep track of which manual is for which version of theprogram. If the manual changes more frequently than the program or is independent ofit, you should also include an edition number for the manual. (The title page should alsocontain this information: see Section 3.4.1 [@titlepage], page 31.)
6.3 Creating Pointers with makeinfo

The makeinfo program has a feature for automatically creating node pointers for ahierarchically organized �le that lacks them.When you take advantage of this feature, you do not need to write the `Next', `Previous',and `Up' pointers after the name of a node. However, you must write a sectioning command,such as @chapter or @section, on the line immediately following each truncated @nodeline. You cannot write a comment line after a node line; the section line must follow itimmediately.In addition, you must follow the `Top' @node line with a line beginning with @top tomark the `Top' node in the �le. See Section 5.3 [@top], page 44.Finally, you must write the name of each node (except for the `Top' node) in a menuthat is one or more hierarchical levels above the node's hierarchical level.This node pointer insertion feature in makeinfo is an alternative to the menu andpointer creation and update commands in Texinfo mode. (See Section 2.4 [Updating Nodesand Menus], page 16.) It is especially helpful to people who do not use GNU Emacs forwriting Texinfo documents.

Chapter 7: Menus 55

7 Menus

Menus contain pointers to subordinate nodes.1 In Info, you use menus to go to suchnodes. Menus have no e�ect in printed manuals and do not appear in them.
By convention, a menu is put at the end of a node since a reader who uses the menumay not see text that follows it.
A node that has a menu should not contain much text. If you have a lot of text and amenu, move most of the text into a new subnode|all but a few lines. Otherwise, a readerwith a terminal that displays only a few lines may miss the menu and its associated text.As a practical matter, you should locate a menu within 20 lines of the beginning of thenode.
The short text before a menu may look awkward in a printed manual. To avoid this,you can write a menu near the beginning of its node and follow the menu by an @node line,and then an @heading line located within @ifinfo and @end ifinfo. This way, the menu,@node line, and title appear only in the Info �le, not the printed document.
For example, the preceding two paragraphs follow an Info-only menu, @node line, andheading, and look like this:
@menu* Menu Location:: Put a menu in a short node.* Writing a Menu:: What is a menu?* Menu Parts:: A menu entry has three parts.* Less Cluttered Menu Entry:: Two part menu entry.* Menu Example:: Two and three part entries.* Other Info Files:: How to refer to a differentInfo file.@end menu
@node Menu Location, Writing a Menu, , Menus@ifinfo@heading Menus Need Short Nodes@end ifinfo

The Texinfo �le for this document contains more than a dozen examples of this pro-cedure. One is at the beginning of this chapter; another is at the beginning of the \CrossReferences" chapter.
7.1 Writing a Menu

A menu consists of an @menu command on a line by itself followed by menu entry linesor menu comment lines and then by an @end menu command on a line by itself.
A menu looks like this:

1 Menus can carry you to any node, regardless of the hierarchical structure; even to nodes in a di�erent
Info �le. However, the GNU Emacs Texinfo mode updating commands work only to create menus of
subordinate nodes. Conventionally, cross references are used to refer to other nodes.

56 Texinfo 3.12

@menuLarger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.@end menuIn a menu, every line that begins with an `* ' is a menu entry. (Note the space afterthe asterisk.) A line that does not start with an `* ' may also appear in a menu. Sucha line is not a menu entry but is a menu comment line that appears in the Info �le. Inthe example above, the line `Larger Units of Text' is a menu comment line; the two linesstarting with `* ' are menu entries.

7.2 The Parts of a Menu
A menu entry has three parts, only the second of which is required:1. The menu entry name (optional).2. The name of the node (required).3. A description of the item (optional).
The template for a menu entry looks like this:
* menu-entry-name: node-name. descriptionFollow the menu entry name with a single colon and follow the node name with tab,comma, period, or newline.In Info, a user selects a node with the m(Info-menu) command. The menu entry nameis what the user types after the mcommand.The third part of a menu entry is a descriptive phrase or sentence. Menu entry namesand node names are often short; the description explains to the reader what the nodeis about. A useful description complements the node name rather than repeats it. Thedescription, which is optional, can spread over two or more lines; if it does, some authorsprefer to indent the second line while others prefer to align it with the �rst (and all others).It's up to you.

7.3 Less Cluttered Menu Entry
When the menu entry name and node name are the same, you can write the nameimmediately after the asterisk and space at the beginning of the line and follow the namewith two colons.For example, write
* Name:: descriptioninstead of
* Name: Name. descriptionYou should use the node name for the menu entry name whenever possible, since itreduces visual clutter in the menu.

Chapter 7: Menus 57

7.4 A Menu Example
A menu looks like this in Texinfo:
@menu* menu entry name: Node name. A short description.* Node name:: This form is preferred.@end menu

This produces:
* menu:
* menu entry name: Node name. A short description.* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo �le:
@menuLarger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.@end menu

This produces:
* menu:Larger Units of Text
* Files:: All about handling files.* Multiples: Buffers. Multiple buffers; editingseveral files at once.In this example, the menu has two entries. `Files' is both a menu entry name and thename of the node referred to by that name. `Multiples' is the menu entry name; it refersto the node named `Buffers'. The line `Larger Units of Text' is a comment; it appearsin the menu, but is not an entry.Since no �le name is speci�ed with either `Files' or `Buffers', they must be the namesof nodes in the same Info �le (see Section 7.5 [Referring to Other Info Files], page 57).

7.5 Referring to Other Info Files
You can create a menu entry that enables a reader in Info to go to a node in anotherInfo �le by writing the �le name in parentheses just before the node name. In this case, youshould use the three-part menu entry format, which saves the reader from having to typethe �le name.The format looks like this:
@menu* �rst-entry-name :(�lename)nodename. description* second-entry-name:(�lename)second-node. description@end menu

58 Texinfo 3.12

For example, to refer directly to the `Outlining' and `Rebinding' nodes in the XEmacs
User's Manual, you would write a menu like this:@menu* Outlining: (xemacs)Outline Mode. The major mode forediting outlines.* Rebinding: (xemacs)Rebinding. How to redefine themeaning of a key.@end menuIf you do not list the node name, but only name the �le, then Info presumes that youare referring to the `Top' node.The `dir' �le that contains the main menu for Info has menu entries that list only �lenames. These take you directly to the `Top' nodes of each Info document. (See Chapter 21[Install an Info File], page 151.)For example:* Info: (info). Documentation browsing system.* Emacs: (emacs). The extensible, self-documentingtext editor.(The `dir' top level directory for the Info system is an Info �le, not a Texinfo �le, but amenu entry looks the same in both types of �le.)Note that the GNU Emacs Texinfo mode menu updating commands only work withnodes within the current bu�er, so you cannot use them to create menus that refer to other�les. You must write such menus by hand.

Chapter 8: Cross References 59

8 Cross References

Cross referencesare used to refer the reader to other parts of the same or di�erentTexinfo �les. In Texinfo, nodes are the places to which cross references can refer.
Often, but not always, a printed document should be designed so that it can be readsequentially. People tire of
ipping back and forth to �nd information that should bepresented to them as they need it.
However, in any document, some information will be too detailed for the current con-text, or incidental to it; use cross references to provide access to such information. Also, anon-line help system or a reference manual is not like a novel; few read such documents insequence from beginning to end. Instead, people look up what they need. For this reason,such creations should contain many cross references to help readers �nd other informationthat they may not have read.
In a printed manual, a cross reference results in a page reference, unless it is to anothermanual altogether, in which case the cross reference names that manual.
In Info, a cross reference results in an entry that you can follow using the Info `f'command. (See Info �le `info', node `Help-Adv'.)
The various cross reference commands use nodes to de�ne cross reference locations.This is evident in Info, in which a cross reference takes you to the speci�ed node. TEX alsouses nodes to de�ne cross reference locations, but the action is less obvious. When TEXgenerates a DVI �le, it records nodes' page numbers and uses the page numbers in makingreferences. Thus, if you are writing a manual that will only be printed, and will not be usedon-line, you must nonetheless write @node lines to name the places to which you make crossreferences.

8.1 Di�erent Cross Reference Commands
There are four di�erent cross reference commands:

@xref Used to start a sentence in the printed manual saying `See . . . ' or an Infocross-reference saying `*Note name: node.'.
@ref Used within or, more often, at the end of a sentence; same as @xref for Info;produces just the reference in the printed manual without a preceding `See'.
@pxref Used within parentheses to make a reference that suits both an Info �le and aprinted book. Starts with a lower case `see' within the printed manual. (`p' isfor `parenthesis'.)
@inforef Used to make a reference to an Info �le for which there is no printed manual.
(The @cite command is used to make references to books and manuals for which thereis no corresponding Info �le and, therefore, no node to which to point. See Section 9.1.8[@cite], page 74.)

60 Texinfo 3.12

8.2 Parts of a Cross Reference
A cross reference command requires only one argument, which is the name of thenode to which it refers. But a cross reference command may contain up to four additionalarguments. By using these arguments, you can provide a cross reference name for Info, atopic description or section title for the printed output, the name of a di�erent Info �le,and the name of a di�erent printed manual.Here is a simple cross reference example:@xref{Node name}.which produces*Note Node name::.and See Section nnn [Node name], page ppp.Here is an example of a full �ve-part cross reference:@xref{Node name, Cross Reference Name, Particular Topic,info-file-name, A Printed Manual}, for details.which produces*Note Cross Reference Name: (info-file-name)Node name,for details.in Info andSee section \Particular Topic" in A Printed Manual, for details.in a printed book.The �ve possible arguments for a cross reference are:1. The node name (required). This is the node to which the cross reference takes you.In a printed document, the location of the node provides the page reference only forreferences within the same document.2. The cross reference name for the Info reference, if it is to be di�erent from the nodename. If you include this argument, it becomes the �rst part of the cross reference. Itis usually omitted.3. A topic description or section name. Often, this is the title of the section. This is usedas the name of the reference in the printed manual. If omitted, the node name is used.4. The name of the Info �le in which the reference is located, if it is di�erent from thecurrent �le. You need not include any `.info' su�x on the �le name, since Info readerstry appending it automatically.5. The name of a printed manual from a di�erent Texinfo �le.
The template for a full �ve argument cross reference looks like this:@xref{node-name, cross-reference-name, title-or-topic ,

info-�le-name, printed-manual-title }.Cross references with one, two, three, four, and �ve arguments are described separatelyfollowing the description of @xref.Write a node name in a cross reference in exactly the same way as in the @node line,including the same capitalization; otherwise, the formatters may not �nd the reference.

Chapter 8: Cross References 61

You can write cross reference commands within a paragraph, but note how Info andTEX format the output of each of the various commands: write @xref at the beginning ofa sentence; write @pxref only within parentheses, and so on.
8.3 @xref

The @xref command generates a cross reference for the beginning of a sentence. TheInfo formatting commands convert it into an Info cross reference, which the Info `f' com-mand can use to bring you directly to another node. The TEX typesetting commandsconvert it into a page reference, or a reference to another book or manual.Most often, an Info cross reference looks like this:*Note node-name::.or like this*Note cross-reference-name: node-name.In TEX, a cross reference looks like this:See Section section-number [node-name], page page.or like thisSee Section section-number [title-or-topic], page page.The @xref command does not generate a period or comma to end the cross referencein either the Info �le or the printed output. You must write that period or comma yourself;otherwise, Info will not recognize the end of the reference. (The @pxref command worksdi�erently. See Section 8.6 [@pxref], page 66.)
Please note:A period or comma must follow the closing brace of an @xref. Itis required to terminate the cross reference. This period or comma will appearin the output, both in the Info �le and in the printed manual.

@xref must refer to an Info node by name. Use @node to de�ne the node (see Sec-tion 6.2.1 [Writing a Node], page 51).
@xref is followed by several arguments inside braces, separated by commas. Whitespacebefore and after these commas is ignored.A cross reference requires only the name of a node; but it may contain up to four addi-tional arguments. Each of these variations produces a cross reference that looks somewhatdi�erent.

Please note: Commas separate arguments in a cross reference; avoid includingthem in the title or other part lest the formatters mistake them for separators.
8.3.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the sameInfo �le. The Info formatters produce output that the Info readers can use to jump to thereference; TEX produces output that speci�es the page and section number for you.For example,@xref{Tropical Storms}.produces

62 Texinfo 3.12

*Note Tropical Storms::.and See Section 3.1 [Tropical Storms], page 24.(Note that in the preceding example the closing brace is followed by a period.)You can write a clause after the cross reference, like this:@xref{Tropical Storms}, for more info.which produces*Note Tropical Storms::, for more info.See Section 3.1 [Tropical Storms], page 24, for more info.(Note that in the preceding example the closing brace is followed by a comma, and then bythe clause, which is followed by a period.)
8.3.2 @xref with Two Arguments

With two arguments, the second is used as the name of the Info cross reference, whilethe �rst is still the name of the node to which the cross reference points.The template is like this:@xref{node-name, cross-reference-name}.For example,@xref{Electrical Effects, Lightning}.produces:*Note Lightning: Electrical Effects.and See Section 5.2 [Electrical E�ects], page 57.(Note that in the preceding example the closing brace is followed by a period; and that thenode name is printed, not the cross reference name.)You can write a clause after the cross reference, like this:@xref{Electrical Effects, Lightning}, for more info.which produces*Note Lightning: Electrical Effects, for more info.and See Section 5.2 [Electrical E�ects], page 57, for more info.(Note that in the preceding example the closing brace is followed by a comma, and then bythe clause, which is followed by a period.)
8.3.3 @xref with Three Arguments

A third argument replaces the node name in the TEX output. The third argumentshould be the name of the section in the printed output, or else state the topic discussedby that section. Often, you will want to use initial upper case letters so it will be easier toread when the reference is printed. Use a third argument when the node name is unsuitablebecause of syntax or meaning.

Chapter 8: Cross References 63

Remember to avoid placing a comma within the title or topic section of a cross reference,or within any other section. The formatters divide cross references into arguments accordingto the commas; a comma within a title or other section will divide it into two arguments. Ina reference, you need to write a title such as \Clouds, Mist, and Fog" without the commas.Also, remember to write a comma or period after the closing brace of a @xref toterminate the cross reference. In the following examples, a clause follows a terminatingcomma.The template is like this:
@xref{node-name, cross-reference-name, title-or-topic }.For example,
@xref{Electrical Effects, Lightning, Thunder and Lightning},for details.produces
*Note Lightning: Electrical Effects, for details.and See Section 5.2 [Thunder and Lightning], page 57, for details.If a third argument is given and the second one is empty, then the third argumentserves both. (Note how two commas, side by side, mark the empty second argument.)
@xref{Electrical Effects, , Thunder and Lightning},for details.produces
*Note Thunder and Lightning: Electrical Effects, for details.and See Section 5.2 [Thunder and Lightning], page 57, for details.As a practical matter, it is often best to write cross references with just the �rstargument if the node name and the section title are the same, and with the �rst and thirdarguments if the node name and title are di�erent.Here are several examples from The GNU Awk User's Guide:
@xref{Sample Program}.@xref{Glossary}.@xref{Case-sensitivity, ,Case-sensitivity in Matching}.@xref{Close Output, , Closing Output Files and Pipes},for more information.@xref{Regexp, , Regular Expressions as Patterns}.

8.3.4 @xref with Four and Five Arguments

In a cross reference, a fourth argument speci�es the name of another Info �le, di�erentfrom the �le in which the reference appears, and a �fth argument speci�es its title as aprinted manual.Remember that a comma or period must follow the closing brace of an @xref commandto terminate the cross reference. In the following examples, a clause follows a terminatingcomma.

64 Texinfo 3.12

The template is:
@xref{node-name, cross-reference-name, title-or-topic ,
info-�le-name, printed-manual-title }.

For example,
@xref{Electrical Effects, Lightning, Thunder and Lightning,weather, An Introduction to Meteorology}, for details.

produces
*Note Lightning: (weather)Electrical Effects, for details.

The name of the Info �le is enclosed in parentheses and precedes the name of the node.
In a printed manual, the reference looks like this:

See section \Thunder and Lightning" in An Introduction to Meteorology, fordetails.
The title of the printed manual is typeset in italics; and the reference lacks a page numbersince TEX cannot know to which page a reference refers when that reference is to anothermanual.

Often, you will leave out the second argument when you use the long version of @xref.In this case, the third argument, the topic description, will be used as the cross referencename in Info.
The template looks like this:

@xref{node-name, , title-or-topic , info-�le-name,
printed-manual-title }, for details.

which produces
*Note title-or-topic : (info-�le-name)node-name, for details.

and
See section title-or-topic in printed-manual-title , for details.

For example,
@xref{Electrical Effects, , Thunder and Lightning,weather, An Introduction to Meteorology}, for details.

produces
*Note Thunder and Lightning: (weather)Electrical Effects,for details.

and
See section \Thunder and Lightning" in An Introduction to Meteorology, fordetails.

On rare occasions, you may want to refer to another Info �le that is within a singleprinted manual|when multiple Texinfo �les are incorporated into the same TEX run butmake separate Info �les. In this case, you need to specify only the fourth argument, andnot the �fth.

Chapter 8: Cross References 65

8.4 Naming a `Top' Node
In a cross reference, you must always name a node. This means that in order to refer toa whole manual, you must identify the `Top' node by writing it as the �rst argument to the@xref command. (This is di�erent from the way you write a menu entry; see Section 7.5[Referring to Other Info Files], page 57.) At the same time, to provide a meaningful sectiontopic or title in the printed cross reference (instead of the word `Top'), you must write anappropriate entry for the third argument to the @xref command.

Thus, to make a cross reference to The GNU Make Manual, write:
@xref{Top, , Overview, make, The GNU Make Manual}.

which produces
*Note Overview: (make)Top.

and See section \Overview" in The GNU Make Manual.
In this example, `Top' is the name of the �rst node, and `Overview' is the name of the �rstsection of the manual.
8.5 @ref

@ref is nearly the same as @xref except that it does not generate a `See' in the printedoutput, just the reference itself. This makes it useful as the last part of a sentence.For example,
For more information, see @ref{Hurricanes}.

produces
For more information, see *Note Hurricanes::.

and For more information, see Section 8.2 [Hurricanes], page 123.
The @ref command sometimes leads writers to express themselves in a manner thatis suitable for a printed manual but looks awkward in the Info format. Bear in mind thatyour audience will be using both the printed and the Info format.For example,
Sea surges are described in @ref{Hurricanes}.producesSea surges are described in Section 6.7 [Hurricanes], page 72.in a printed document, and the following in Info:
Sea surges are described in *Note Hurricanes::.
Caution: You must write a period or comma immediately after an @ref com-mand with two or more arguments. Otherwise, Info will not �nd the end of thecross reference entry and its attempt to follow the cross reference will fail. Asa general rule, you should write a period or comma after every @ref command.This looks best in both the printed and the Info output.

66 Texinfo 3.12

8.6 @pxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but youuse it only inside parentheses and you do not type a comma or period after the command'sclosing brace. The command di�ers from @xref in two ways:
1. TEX typesets the reference for the printed manual with a lower case `see' rather thanan upper case `See'.
2. The Info formatting commands automatically end the reference with a closing colon orperiod.

Because one type of formatting automatically inserts closing punctuation and the otherdoes not, you should use @pxref only inside parentheses as part of another sentence. Also,you yourself should not insert punctuation after the reference, as you do with @xref.
@pxref is designed so that the output looks right and works right between parenthesesboth in printed output and in an Info �le. In a printed manual, a closing comma or periodshould not follow a cross reference within parentheses; such punctuation is wrong. But in anInfo �le, suitable closing punctuation must follow the cross reference so Info can recognizeits end. @pxref spares you the need to use complicated methods to put a terminator intoone form of the output and not the other.

With one argument, a parenthetical cross reference looks like this:
... storms cause flooding (@pxref{Hurricanes}) ...

which produces
... storms cause flooding (*Note Hurricanes::) ...

and
. . . storms cause
ooding (see Section 6.7 [Hurricanes], page 72) . . .

With two arguments, a parenthetical cross reference has this template:
... (@pxref{node-name, cross-reference-name}) ...

which produces
... (*Note cross-reference-name: node-name.) ...

and
. . . (see Section nnn [node-name], page ppp) . . .

@pxref can be used with up to �ve arguments just like @xref (see Section 8.3 [@xref],page 61).
Please note: Use @pxref only as a parenthetical reference. Do not try to use@pxref as a clause in a sentence. It will look bad in either the Info �le, theprinted output, or both.
Also, parenthetical cross references look best at the ends of sentences. Althoughyou may write them in the middle of a sentence, that location breaks up the
ow of text.

Chapter 8: Cross References 67

8.7 @inforef

@inforef is used for cross references to Info �les for which there are no printed manuals.Even in a printed manual, @inforef generates a reference directing the user to look in anInfo �le.The command takes either two or three arguments, in the following order:1. The node name.2. The cross reference name (optional).3. The Info �le name.
Separate the arguments with commas, as with @xref. Also, you must terminate the refer-ence with a comma or period after the `}', as you do with @xref.The template is:

@inforef{node-name, cross-reference-name, info-�le-name },Thus,
@inforef{Expert, Advanced Info commands, info},for more information.produces
*Note Advanced Info commands: (info)Expert,for more information.and See Info �le `info', node `Expert', for more information.Similarly,
@inforef{Expert, , info}, for more information.produces
*Note (info)Expert::, for more information.and See Info �le `info', node `Expert', for more information.The converse of @inforef is @cite, which is used to refer to printed works for whichno Info form exists. See Section 9.1.8 [@cite], page 74.

8.8 @uref{url [, displayed-text]}

@uref produces a reference to a uniform resource locator (URL). It takes one mandatoryargument, the URL, and one optional argument, the text to display (the default is the URLitself). In HTML output, @uref produces a link you can follow. For example:
The official GNU ftp site is@uref{ftp://ftp.gnu.ai.mit.edu/pub/gnu}produces (in text):The o�cial GNU ftp site isftp://ftp.gnu.ai.mit.edu/pub/gnuwhereas

ftp://ftp.gnu.ai.mit.edu/pub/gnu

68 Texinfo 3.12

The official@uref{ftp://ftp.gnu.ai.mit.edu/pub/gnu,GNU ftp site} holds programs and texts.produces (in text):The o�cial GNU ftp site holdsprograms and texts.and (in HTML):The official GNU ftpsite holds programs and texts.To merely indicate a URL, use @url (see Section 9.1.9 [url], page 74).

ftp://ftp.gnu.ai.mit.edu/pub/gnu

Chapter 9: Marking Words and Phrases 69

9 Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo for-matters use this information to determine how to highlight the text. You can specify, forexample, whether a word or phrase is a de�ning occurrence, a metasyntactic variable, or asymbol used in a program. Also, you can emphasize text.
9.1 Indicating De�nitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refersto. For example, metasyntactic variables are marked by @var, and code by @code. Sincethe pieces of text are labelled by commands that tell what kind of object they are, it iseasy to change the way the Texinfo formatters prepare such text. (Texinfo is an intentionalformatting language rather than a typesetting formatting language.)For example, in a printed manual, code is usually illustrated in a typewriter font;@code tells TEX to typeset this text in this font. But it would be easy to change the wayTEX highlights code to use another font, and this change would not e�ect how keystrokeexamples are highlighted. If straight typesetting commands were used in the body of the�le and you wanted to make a change, you would need to check every single occurrence tomake sure that you were changing code and not something else that should not be changed.The highlighting commands can be used to generate useful information from the �le,such as lists of functions or �le names. It is possible, for example, to write a programin Emacs Lisp (or a keyboard macro) to insert an index entry after every paragraph thatcontains words or phrases marked by a speci�ed command. You could do this to constructan index of functions if you had not already made the entries.The commands serve a variety of purposes:
@code{sample-code}Indicate text that is a literal example of a piece of a program.
@kbd{keyboard-characters}Indicate keyboard input.
@key{key-name}Indicate the conventional name for a key on a keyboard.
@samp{text }Indicate text that is a literal example of a sequence of characters.
@var{metasyntactic-variable}Indicate a metasyntactic variable.
@url{uniform-resource-locator}Indicate a uniform resource locator for the World Wide Web.
@file{�le-name}Indicate the name of a �le.
@email{email-address[, displayed-text]}Indicate an electronic mail address.

70 Texinfo 3.12

@dfn{term}Indicate the introductory or de�ning use of a term.
@cite{reference}Indicate the name of a book.
9.1.1 @code{sample-code }

Use the @code command to indicate text that is a piece of a program and which consistsof entire syntactic tokens. Enclose the text in braces.Thus, you should use @code for an expression in a program, for the name of a variableor function used in a program, or for a keyword. Also, you should use @code for the nameof a program, such as diff, that is a name used in the machine. (You should write thename of a program in the ordinary text font if you regard it as a new English word, suchas `Emacs' or `Bison'.)Use @code for environment variables such as TEXINPUTS, and other variables.Use @code for command names in command languages that resemble programminglanguages, such as Texinfo or the shell. For example, @code and @samp are produced bywriting `@code{@@code}' and `@code{@@samp}' in the Texinfo source, respectively.Note, however, that you should not use @code for shell options such as `-c' when suchoptions stand alone. (Use @samp.) Also, an entire shell command often looks better ifwritten using @samp rather than @code. In this case, the rule is to choose the more pleasingformat.It is incorrect to alter the case of a word inside an @code command when it appears atthe beginning of a sentence. Most computer languages are case sensitive. In C, for example,Printf is di�erent from the identi�er printf, and most likely is a misspelling of it. Evenin languages which are not case sensitive, it is confusing to a human reader to see identi�ersspelled in di�erent ways. Pick one spelling and always use that. If you do not want to starta sentence with a command written all in lower case, you should rearrange the sentence.Do not use the @code command for a string of characters shorter than a syntactic token.If you are writing about `TEXINPU', which is just a part of the name for the TEXINPUTSenvironment variable, you should use @samp.In particular, you should not use the @code command when writing about the charactersused in a token; do not, for example, use @code when you are explaining what letters orprintable symbols can be used in the names of functions. (Use @samp.) Also, you should notuse @code to mark text that is considered input to programs unless the input is written ina language that is like a programming language. For example, you should not use @code forthe keystroke commands of GNU Emacs (use @kbd instead) although you may use @codefor the names of the Emacs Lisp functions that the keystroke commands invoke.In the printed manual, @code causes TEX to typeset the argument in a typewriterface. In the Info �le, it causes the Info formatting commands to use single quotation marksaround the text.For example,Use @code{diff} to compare two files.produces this in the printed manual:

Chapter 9: Marking Words and Phrases 71

Use diff to compare two �les.and this in the Info �le:
Use `diff' to compare two files.

9.1.2 @kbd{keyboard-characters }

Use the @kbd command for characters of input to be typed by users. For example, torefer to the characters M-a, write
@kbd{M-a}and to refer to the characters M-x shell , write
@kbd{M-x shell}The @kbd command has the same e�ect as @code in Info, but by default produces adi�erent font (slanted typewriter instead of normal typewriter) in the printed manual, sousers can distinguish the characters they are supposed to type from those the computeroutputs.Since the usage of @kbd varies from manual to manual, you can control the font switch-ing with the @kbdinputstyle command. This command has no e�ect on Info output.Write this command at the beginning of a line with a single word as an argument, one ofthe following:

`code' Always use the same font for @kbd as @code.
`example' Use the distinguishing font for @kbd only in @example and similar environments.
`example' (the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of an @kbd command. Here, forexample, is the way to describe a command that would be described more verbosely as\press an `r' and then press the hRETi key":
@kbd{r @key{RET}}This produces: r hRETi

You also use the @kbd command if you are spelling out the letters you type; for example:
To give the @code{logout} command,type the characters @kbd{l o g o u t @key{RET}}.This produces:To give the logout command, type the characters l o g o u t hRETi .(Also, this example shows that you can add spaces for clarity. If you really want tomention a space character as one of the characters of input, write @key{SPC} for it.)

9.1.3 @key{key-name }

Use the @key command for the conventional name for a key on a keyboard, as in:
@key{RET}You can use the @key command within the argument of an @kbd command when thesequence of characters to be typed includes one or more keys that are described by name.

72 Texinfo 3.12

For example, to produce C-x hESCi you would type:
@kbd{C-x @key{ESC}}

Here is a list of the recommended names for keys:
SPC Space
RET Return
LFD Linefeed (however, since most keyboards nowadays do not have aLinefeed key, it might be better to call this character C-j .
TAB Tab
BS Backspace
ESC Escape
DEL Delete
SHIFT Shift
CTRL Control
META Meta

There are subtleties to handling words like `meta' or `ctrl' that are names of modi�erkeys. When mentioning a character in which the modi�er key is used, such as Meta-a, usethe @kbd command alone; do not use the @key command; but when you are referring to themodi�er key in isolation, use the @key command. For example, write `@kbd{Meta-a}' toproduce Meta-a and `@key{META}' to produce hMETAi .
9.1.4 @samp{text }

Use the @samp command to indicate text that is a literal example or `sample' of asequence of characters in a �le, string, pattern, etc. Enclose the text in braces. Theargument appears within single quotation marks in both the Info �le and the printed manual;in addition, it is printed in a �xed-width font.
To match @samp{foo} at the end of the line,use the regexp @samp{foo$}.

producesTo match `foo' at the end of the line, use the regexp `foo$'.
Any time you are referring to single characters, you should use @samp unless @kbd or@key is more appropriate. Use @samp for the names of command-line options (except inan @table, where @code seems to read more easily). Also, you may use @samp for entirestatements in C and for entire shell commands|in this case, @samp often looks better than@code. Basically, @samp is a catchall for whatever is not covered by @code, @kbd, or @key.
Only include punctuation marks within braces if they are part of the string you arespecifying. Write punctuation marks outside the braces if those punctuation marks are partof the English text that surrounds the string. In the following sentence, for example, thecommas and period are outside of the braces:

Chapter 9: Marking Words and Phrases 73

In English, the vowels are @samp{a}, @samp{e},@samp{i}, @samp{o}, @samp{u}, and sometimes@samp{y}.This produces:In English, the vowels are `a', `e', `i', `o', `u', and sometimes `y'.
9.1.5 @var{metasyntactic-variable }

Use the @var command to indicate metasyntactic variables. A metasyntactic variable issomething that stands for another piece of text. For example, you should use a metasyntacticvariable in the documentation of a function to describe the arguments that are passed tothat function.Do not use @var for the names of particular variables in programming languages. Theseare speci�c names from a program, so @code is correct for them. For example, the EmacsLisp variable texinfo-tex-command is not a metasyntactic variable; it is properly formattedusing @code.The e�ect of @var in the Info �le is to change the case of the argument to all uppercase; in the printed manual, to italicize it.For example,To delete file @var{filename},type @code{rm @var{filename}}.producesTo delete �le �lename, type rm �lename .(Note that @var may appear inside @code, @samp, @file, etc.)Write a metasyntactic variable all in lower case without spaces, and use hyphens tomake it more readable. Thus, the Texinfo source for the illustration of how to begin aTexinfo manual looks like this:\input texinfo@@setfilename @var{info-file-name}@@settitle @var{name-of-manual}This produces:\input texinfo@setfilename info-�le-name@settitle name-of-manualIn some documentation styles, metasyntactic variables are shown with angle brackets,for example:..., type rm <filename>However, that is not the style that Texinfo uses. (You can, of course, modify the sources toTEX and the Info formatting commands to output the <...> format if you wish.)
9.1.6 @file{ �le-name }

Use the @file command to indicate text that is the name of a �le, bu�er, or directory,or is the name of a node in Info. You can also use the command for �le name su�xes. Donot use @file for symbols in a programming language; use @code.

74 Texinfo 3.12

Currently, @file is equivalent to @samp in its e�ects. For example,
The @file{.el} files are inthe @file{/usr/local/emacs/lisp} directory.

producesThe `.el' �les are in the `/usr/local/emacs/lisp' directory.
9.1.7 @dfn{term }

Use the @dfn command to identify the introductory or de�ning use of a technical term.Use the command only in passages whose purpose is to introduce a term which will be usedagain or which the reader ought to know. Mere passing mention of a term for the �rst timedoes not deserve @dfn. The command generates italics in the printed manual, and doublequotation marks in the Info �le. For example:
Getting rid of a file is called @dfn{deleting} it.

producesGetting rid of a �le is called deleting it.
As a general rule, a sentence containing the de�ning occurrence of a term should be ade�nition of the term. The sentence does not need to say explicitly that it is a de�nition,but it should contain the information of a de�nition|it should make the meaning clear.

9.1.8 @cite{ reference }

Use the @cite command for the name of a book that lacks a companion Info �le. Thecommand produces italics in the printed manual, and quotation marks in the Info �le.
(If a book is written in Texinfo, it is better to use a cross reference command since areader can easily follow such a reference in Info. See Section 8.3 [@xref], page 61.)

9.1.9 @url{uniform-resource-locator }

Use the @url to indicate a uniform resource locator on the World Wide Web. This isanalogous to @file, @var, etc., and is purely for markup purposes. It does not produce alink you can follow in HTML output (the @uref command does, see Section 8.8 [@uref],page 67). It is useful for example URL's which do not actually exist. For example:
For example, the url might be@url{http://host.domain.org/path}.

9.1.10 @email{email-address [, displayed-text]}

Use the @email command to indicate an electronic mail address. It takes one manda-tory argument, the address, and one optional argument, the text to display (the default isthe address itself).
In Info and TEX, the address is shown in angle brackets, preceded by the text to displayif any. In HTML output, @email produces a `mailto' link that usually brings up a mailcomposition window. For example:

Chapter 9: Marking Words and Phrases 75

Send bug reports to @email{bug-texinfo@@gnu.org}.Send suggestions to the @email{bug-texinfo@@gnu.org, same place}.
produces

Send bug reports to bug-texinfo@gnu.org.Send suggestions to the same place.
9.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to what categorythe words belong to; an example is the @code command. Most often, this is the best wayto mark words. However, sometimes you will want to emphasize text without indicating acategory. Texinfo has two commands to do this. Also, Texinfo has several commands thatspecify the font in which TEX will typeset text. These commands have no a�ect on Infoand only one of them, the @r command, has any regular use.
9.2.1 @emph{text } and @strong{text }

The @emph and @strong commands are for emphasis; @strong is stronger. In printedoutput, @emph produces italics and @strong produces bold.For example,
@quotation@strong{Caution:} @samp{rm * .[^.]*} removes @emph{all}files in the directory.@end quotationproduces the following in printed output:
Caution: rm * .[^.]* removes all �les in the directory.

and the following in Info:
Caution: `rm * .[^.]*' removes *all*files in the directory.

The @strong command is seldom used except to mark what is, in e�ect, a typographicalelement, such as the word `Caution' in the preceding example.
In the Info �le, both @emph and @strong put asterisks around the text.

Caution: Do not use @emph or @strong with the word `Note'; Info will mistakethe combination for a cross reference. Use a phrase such as Please note or
Caution instead.

9.2.2 @sc{text } : The Small Caps Font

Use the `@sc' command to set text in the printed output in a small caps font andset text in the Info �le in upper case letters.
Write the text between braces in lower case, like this:
The @sc{acm} and @sc{ieee} are technical societies.

This produces:

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

76 Texinfo 3.12

The acm and ieee are technical societies.TEX typesets the small caps font in a manner that prevents the letters from `jumpingout at you on the page'. This makes small caps text easier to read than text in all uppercase. The Info formatting commands set all small caps text in upper case.If the text between the braces of an @sc command is upper case, TEX typesets in
FULL-SIZE CAPITALS . Use full-size capitals sparingly.You may also use the small caps font for a jargon word such as ato (a nasa wordmeaning `abort to orbit').There are subtleties to using the small caps font with a jargon word such as cdr , aword used in Lisp programming. In this case, you should use the small caps font when theword refers to the second and subsequent elements of a list (the cdr of the list), but youshould use `@code' when the word refers to the Lisp function of the same spelling.
9.2.3 Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the printed manualbut have no e�ect in the Info �le. @i requests italic font (in some versions of TEX, a slantedfont is used), @b requests bold face, @t requests the fixed-width, typewriter-style font usedby @code, and @r requests a roman font, which is the usual font in which text is printed.All four commands apply to an argument that follows, surrounded by braces.Only the @r command has much use: in example programs, you can use the @r com-mand to convert code comments from the �xed-width font to a roman font. This looksbetter in printed output.For example,
@lisp(+ 2 2) ; @r{Add two plus two.}@end lispproduces
(+ 2 2) ; Add two plus two.If possible, you should avoid using the other three font commands. If you need to useone, it probably indicates a gap in the Texinfo language.

9.2.4 Customized Highlighting

You can use regular TEX commands inside of @iftex . . . @end iftex to create yourown customized highlighting commands for Texinfo. The easiest way to do this is to equateyour customized commands with pre-existing commands, such as those for italics. Suchnew commands work only with TEX.You can use the @definfoenclose command inside of @ifinfo . . . @end ifinfo to de-�ne commands for Info with the same names as new commands for TEX. @definfoenclosecreates new commands for Info that mark text by enclosing it in strings that precede andfollow the text.1
1 Currently, @definfoenclose works only with texinfo-format-buffer and texinfo-format-region ,

not with makeinfo .

Chapter 9: Marking Words and Phrases 77

Here is how to create a new @-command called @phoo that causes TEX to typeset itsargument in italics and causes Info to display the argument between `//' and `\\'.For TEX, write the following to equate the @phoo command with the existing @i italicscommand:@iftex@global@let@phoo=@i@end iftexThis de�nes @phoo as a command that causes TEX to typeset the argument to @phoo initalics. @global@let tells TEX to equate the next argument with the argument that followsthe equals sign.For Info, write the following to tell the Info formatters to enclose the argument between`//' and `\\':@ifinfo@definfoenclose phoo, //, \\@end ifinfoWrite the @definfoenclose command on a line and follow it with three arguments sepa-rated by commas (commas are used as separators in an @node line in the same way).
� The �rst argument to @definfoenclose is the @-command name without the `@';
� the second argument is the Info start delimiter string; and,
� the third argument is the Info end delimiter string.

The latter two arguments enclose the highlighted text in the Info �le. A delimiter stringmay contain spaces. Neither the start nor end delimiter is required. However, if you donot provide a start delimiter, you must follow the command name with two commas in arow; otherwise, the Info formatting commands will misinterpret the end delimiter string asa start delimiter string.After you have de�ned @phoo both for TEX and for Info, you can then write @phoo{bar}to see `//bar\\' in Info and see bar in italics in printed output.Note that each de�nition applies to its own formatter: one for TEX, the other for Info.Here is another example:@ifinfo@definfoenclose headword, , :@end ifinfo@iftex@global@let@headword=@b@end iftexThis de�nes @headword as an Info formatting command that inserts nothing before and acolon after the argument and as a TEX formatting command to typeset its argument inbold.

78 Texinfo 3.12

Chapter 10: Quotations and Examples 79

10 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphsthat are set o� from the bulk of the text and treated di�erently. They are usually indented.In Texinfo, you always begin a quotation or example by writing an @-command at thebeginning of a line by itself, and end it by writing an @end command that is also at thebeginning of a line by itself. For instance, you begin an example by writing @example byitself at the beginning of a line and end the example by writing @end example on a line byitself, at the beginning of that line.
10.1 The Block Enclosing Commands

Here are commands for quotations and examples:
@quotationIndicate text that is quoted. The text is �lled, indented, and printed in a romanfont by default.
@example Illustrate code, commands, and the like. The text is printed in a �xed-widthfont, and indented but not �lled.
@lisp Illustrate Lisp code. The text is printed in a �xed-width font, and indented butnot �lled.
@smallexampleIllustrate code, commands, and the like. Similar to @example, except that inTEX this command typesets text in a smaller font for the smaller @smallbookformat than for the 8.5 by 11 inch format.
@smalllispIllustrate Lisp code. Similar to @lisp, except that in TEX this command type-sets text in a smaller font for the smaller @smallbook format than for the 8.5by 11 inch format.
@display Display illustrative text. The text is indented but not �lled, and no font isspeci�ed (so, by default, the font is roman).
@format Print illustrative text. The text is not indented and not �lled and no font isspeci�ed (so, by default, the font is roman).

The @exdent command is used within the above constructs to undo the indentation ofa line.The @flushleft and @flushright commands are used to line up the left or rightmargins of un�lled text.The @noindent command may be used after one of the above constructs to preventthe following text from being indented as a new paragraph.You can use the @cartouche command within one of the above constructs to high-light the example or quotation by drawing a box with rounded corners around it. (The@cartouche command a�ects only the printed manual; it has no e�ect in the Info �le; seeSection 10.11 [Drawing Cartouches Around Examples], page 84.)

80 Texinfo 3.12

10.2 @quotation

The text of a quotation is processed normally except that:
� the margins are closer to the center of the page, so the whole of the quotation isindented;
� the �rst lines of paragraphs are indented no more than other lines;
� in the printed output, interparagraph spacing is reduced.

This is an example of text written between an @quotation command and an@end quotation command. An @quotation command is most often used toindicate text that is excerpted from another (real or hypothetical) printed work.Write an @quotation command as text on a line by itself. This line will disappearfrom the output. Mark the end of the quotation with a line beginning with and containingonly @end quotation. The @end quotation line will likewise disappear from the output.Thus, the following,@quotationThis isa foo.@end quotationproducesThis is a foo.
10.3 @example

The @example command is used to indicate an example that is not part of the runningtext, such as computer input or output.This is an example of text written between an@example commandand an @end example command.The text is indented but not filled.
In the printed manual, the text is typeset in afixed-width font, and extra spaces and blank lines aresignificant. In the Info file, an analogous result isobtained by indenting each line with five spaces.Write an @example command at the beginning of a line by itself. This line will disappearfrom the output. Mark the end of the example with an @end example command, also writtenat the beginning of a line by itself. The @end example will disappear from the output.For example,@examplemv foo bar@end exampleproducesmv foo barSince the lines containing @example and @end example will disappear, you should put ablank line before the @example and another blank line after the @end example. (Remember

Chapter 10: Quotations and Examples 81

that blank lines between the beginning @example and the ending @end example will appearin the output.)
Caution: Do not use tabs in the lines of an example (or anywhere else in Texinfo,for that matter)! TEX treats tabs as single spaces, and that is not what theylook like. This is a problem with TEX. (If necessary, in Emacs, you can use M-x
untabify to convert tabs in a region to multiple spaces.)

Examples are often, logically speaking, \in the middle" of a paragraph, and the textcontinues after an example should not be indented. The @noindent command prevents apiece of text from being indented as if it were a new paragraph.
(The @code command is used for examples of code that are embedded within sentences,not set o� from preceding and following text. See Section 9.1.1 [@code], page 70.)

10.4 @noindent

An example or other inclusion can break a paragraph into segments. Ordinarily, theformatters indent text that follows an example as a new paragraph. However, you can pre-vent this by writing @noindent at the beginning of a line by itself preceding the continuationtext.
For example:
@exampleThis is an example@end example
@noindentThis line is not indented. As you can see, thebeginning of the line is fully flush left with the linethat follows after it. (This whole example is between@code{@@display} and @code{@@end display}.)

produces
This is an example

This line is not indented. As you can see, thebeginning of the line is fully
ush left with the linethat follows after it. (This whole example is between@display and @end display.)
To adjust the number of blank lines properly in the Info �le output, remember thatthe line containing @noindent does not generate a blank line, and neither does the @endexample line.
In the Texinfo source �le for this manual, each line that says `produces' is preceded bya line containing @noindent.
Do not put braces after an @noindent command; they are not necessary, since@noindent is a command used outside of paragraphs (see Appendix I [Command Syntax],page 201).

82 Texinfo 3.12

10.5 @lisp

The @lisp command is used for Lisp code. It is synonymous with the @examplecommand.
This is an example of text written between an@lisp command and an @end lisp command.

Use @lisp instead of @example to preserve information regarding the nature of theexample. This is useful, for example, if you write a function that evaluates only and all theLisp code in a Texinfo �le. Then you can use the Texinfo �le as a Lisp library.1
Mark the end of @lisp with @end lisp on a line by itself.

10.6 @smallexampleand @smalllisp

In addition to the regular @example and @lisp commands, Texinfo has two other\example-style" commands. These are the @smallexample and @smalllisp commands.Both these commands are designed for use with the @smallbook command that causes TEXto produce a printed manual in a 7 by 9.25 inch format rather than the regular 8.5 by 11inch format.
In TEX, the @smallexample and @smalllisp commands typeset text in a smaller fontfor the smaller @smallbook format than for the 8.5 by 11 inch format. Consequently, manyexamples containing long lines �t in a narrower, @smallbook page without needing to beshortened. Both commands typeset in the normal font size when you format for the 8.5 by11 inch size; indeed, in this situation, the @smallexample and @smalllisp commands arede�ned to be the @example and @lisp commands.
In Info, the @smallexample and @smalllisp commands are equivalent to the @exampleand @lisp commands, and work exactly the same.
Mark the end of @smallexample or @smalllisp with @end smallexample or @endsmalllisp, respectively.
Here is an example written in the small font used by the @smallexample and@smalllisp commands:The @smallexample and @smalllisp commands make it easier to prepare smallerformat manuals without forcing you to edit examples by hand to �t them onto narrowerpages.
As a general rule, a printed document looks better if you write all the examples in achapter consistently in @example or in @smallexample. Only occasionally should you mixthe two formats.
See Section 19.10 [Printing \Small" Books], page 141, for more information about the@smallbook command.

1 It would be straightforward to extend Texinfo to work in a similar fashion for C, Fortran, or other
languages.

Chapter 10: Quotations and Examples 83

10.7 @display

The @display command begins a kind of example. It is like the @example commandexcept that, in a printed manual, @display does not select the �xed-width font. In fact,it does not specify the font at all, so that the text appears in the same font it would haveappeared in without the @display command.This is an example of text written between an @display commandand an @end display command. The @display commandindents the text, but does not �ll it.
10.8 @format

The @format command is similar to @example except that, in the printed manual,@format does not select the �xed-width font and does not narrow the margins.This is an example of text written between an @format commandand an @end format command. As you can seefrom this example,the @format command does not �ll the text.
10.9 @exdent: Undoing a Line's Indentation

The @exdent command removes any indentation a line might have. The command iswritten at the beginning of a line and applies only to the text that follows the commandthat is on the same line. Do not use braces around the text. In a printed manual, the texton an @exdent line is printed in the roman font.
@exdent is usually used within examples. Thus,
@exampleThis line follows an @@example command.@exdent This line is exdented.This line follows the exdented line.The @@end example comes on the next line.@end groupproduces
This line follows an @example command.This line is exdented.This line follows the exdented line.The @end example comes on the next line.In practice, the @exdent command is rarely used. Usually, you un-indent text by endingthe example and returning the page to its normal width.

10.10 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left andright margins of a page, but do not �ll the text. The commands are written on lines of theirown, without braces. The @flushleft and @flushright commands are ended by @endflushleft and @end flushright commands on lines of their own.

84 Texinfo 3.12

For example,@flushleftThis text iswritten flushleft.@end flushleftproducesThis text iswritten
ushleft.
@flushright produces the type of indentation often used in the return address ofletters. For example,@flushrightHere is an example of text writtenflushright. The @code{@flushright} commandright justifies every line but leaves theleft end ragged.@end flushrightproduces Here is an example of text written
ushright. The @flushright commandright justi�es every line but leaves theleft end ragged.

10.11 Drawing Cartouches Around Examples
In a printed manual, the @cartouche command draws a box with rounded cornersaround its contents. You can use this command to further highlight an example or quotation.For instance, you could write a manual in which one type of example is surrounded by acartouche for emphasis.The @cartouche command a�ects only the printed manual; it has no e�ect in the Info�le. For example,@example@cartouche% pwd/usr/local/share/emacs@end cartouche@end examplesurrounds the two-line example with a box with rounded corners, in the printed manual.In a printed manual, the example looks like this:

� �

% pwd/usr/local/lib/emacs/info

 	

Chapter 11: Lists and Tables 85

11 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;two-column tables can highlight the items in the �rst column; multi-column tables are alsosupported.Texinfo automatically indents the text in lists or tables, and numbers an enumeratedlist. This last feature is useful if you modify the list, since you do not need to renumber ityourself.Numbered lists and tables begin with the appropriate @-command at the beginning ofa line, and end with the corresponding @end command on a line by itself. The table anditemized-list commands also require that you write formatting information on the same lineas the beginning @-command.Begin an enumerated list, for example, with an @enumerate command and end the listwith an @end enumerate command. Begin an itemized list with an @itemize command,followed on the same line by a formatting command such as @bullet, and end the list withan @end itemize command.Precede each element of a list with an @item or @itemx command.
Here is an itemized list of the di�erent kinds of table and lists:
� Itemized lists with and without bullets.
� Enumerated lists, using numbers or letters.
� Two-column tables with highlighting.

Here is an enumerated list with the same items:1. Itemized lists with and without bullets.2. Enumerated lists, using numbers or letters.3. Two-column tables with highlighting.
And here is a two-column table with the same items and their @-commands:
@itemize Itemized lists with and without bullets.
@enumerateEnumerated lists, using numbers or letters.
@table@ftable@vtable Two-column tables with indexing.
11.1 Making an Itemized List

The @itemize command produces sequences of indented paragraphs, with a bullet orother mark inside the left margin at the beginning of each paragraph for which such a markis desired.

86 Texinfo 3.12

Begin an itemized list by writing @itemize at the beginning of a line. Follow thecommand, on the same line, with a character or a Texinfo command that generates a mark.Usually, you will write @bullet after @itemize, but you can use @minus, or any characteror any special symbol that results in a single character in the Info �le. (When you write@bullet or @minus after an @itemize command, you may omit the `{}'.)Write the text of the indented paragraphs themselves after the @itemize, up to anotherline that says @end itemize.Before each paragraph for which a mark in the margin is desired, write a line that saysjust @item. Do not write any other text on this line.Usually, you should put a blank line before an @item. This puts a blank line in the Info�le. (TEX inserts the proper interline whitespace in either case.) Except when the entriesare very brief, these blank lines make the list look better.Here is an example of the use of @itemize, followed by the output it produces. Notethat @bullet produces a `*' in Info and a round dot in TEX.@itemize @bullet@itemSome text for foo.
@itemSome textfor bar.@end itemizeThis produces:� Some text for foo.� Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked withdashes embedded in a list marked with bullets:@itemize @bullet@itemFirst item.
@itemize @minus@itemInner item.
@itemSecond inner item.@end itemize
@itemSecond outer item.@end itemizeThis produces:� First item.� Inner item.

Chapter 11: Lists and Tables 87

� Second inner item.� Second outer item.
11.2 Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 11.1 [@itemize], page 85), except that thelabels on the items are successive integers or letters instead of bullets.Write the @enumerate command at the beginning of a line. The command does notrequire an argument, but accepts either a number or a letter as an option. Without anargument, @enumerate starts the list with the number `1'. With a numeric argument, suchas `3', the command starts the list with that number. With an upper or lower case letter,such as `a' or `A', the command starts the list with that letter.Write the text of the enumerated list in the same way you write an itemized list: put@item on a line of its own before the start of each paragraph that you want enumerated.Do not write any other text on the line beginning with @item.You should put a blank line between entries in the list. This generally makes it easierto read the Info �le.Here is an example of @enumerate without an argument:@enumerate@itemUnderlying causes.
@itemProximate causes.@end enumerateThis produces:1. Underlying causes.2. Proximate causes.

Here is an example with an argument of 3:
@enumerate 3@itemPredisposing causes.
@itemPrecipitating causes.
@itemPerpetuating causes.@end enumerateThis produces:3. Predisposing causes.4. Precipitating causes.5. Perpetuating causes.

88 Texinfo 3.12

Here is a brief summary of the alternatives. The summary is constructed using@enumerate with an argument of a.
a. @enumerateWithout an argument, produce a numbered list, starting with the number 1.b. @enumerate positive-integerWith a (positive) numeric argument, start a numbered list with that number. You canuse this to continue a list that you interrupted with other text.c. @enumerate upper-case-letterWith an upper case letter as argument, start a list in which each item is marked by aletter, beginning with that upper case letter.d. @enumerate lower-case-letterWith a lower case letter as argument, start a list in which each item is marked by aletter, beginning with that lower case letter.

You can also nest enumerated lists, as in an outline.
11.3 Making a Two-column Table

@table is similar to @itemize (see Section 11.1 [@itemize], page 85), but allows you tospecify a name or heading line for each item. The @table command is used to produce two-column tables, and is especially useful for glossaries, explanatory exhibits, and command-line option summaries.Write the @table command at the beginning of a line and follow it on the same linewith an argument that is a Texinfo \indicating" command such as @code, @samp, @var, or@kbd (see Section 9.1 [Indicating], page 69). Although these commands are usually followedby arguments in braces, in this case you use the command name without an argumentbecause @item will supply the argument. This command will be applied to the text thatgoes into the �rst column of each item and determines how it will be highlighted. Forexample, @code will cause the text in the �rst column to be highlighted with an @codecommand. (We recommend @code for @table's of command-line options.)You may also choose to use the @asis command as an argument to @table. @asis isa command that does nothing; if you use this command after @table, TEX and the Infoformatting commands output the �rst column entries without added highlighting (\as is").(The @table command may work with other commands besides those listed here.However, you can only use commands that normally take arguments in braces.)Begin each table entry with an @item command at the beginning of a line. Write the�rst column text on the same line as the @item command. Write the second column texton the line following the @item line and on subsequent lines. (You do not need to typeanything for an empty second column entry.) You may write as many lines of supportingtext as you wish, even several paragraphs. But only text on the same line as the @item willbe placed in the �rst column.Normally, you should put a blank line before an @item line. This puts a blank like inthe Info �le. Except when the entries are very brief, a blank line looks better.

Chapter 11: Lists and Tables 89

The following table, for example, highlights the text in the �rst column with an @sampcommand:@table @samp@item fooThis is the text for@samp{foo}.
@item barText for @samp{bar}.@end tableThis produces:

`foo' This is the text for `foo'.
`bar' Text for `bar'.

If you want to list two or more named items with a single block of text, use the @itemxcommand. (See Section 11.3.2 [@itemx], page 89.)
11.3.1 @ftable and @vtable

The @ftable and @vtable commands are the same as the @table command exceptthat @ftable automatically enters each of the items in the �rst column of the table into theindex of functions and @vtable automatically enters each of the items in the �rst columnof the table into the index of variables. This simpli�es the task of creating indices. Onlythe items on the same line as the @item commands are indexed, and they are indexed inexactly the form that they appear on that line. See Chapter 12 [Creating Indices], page 93,for more information about indices.Begin a two-column table using @ftable or @vtable by writing the @-command at thebeginning of a line, followed on the same line by an argument that is a Texinfo commandsuch as @code, exactly as you would for an @table command; and end the table with an@end ftable or @end vtable command on a line by itself.See the example for @table in the previous section.
11.3.2 @itemx

Use the @itemx command inside a table when you have two or more �rst column entriesfor the same item, each of which should appear on a line of its own. Use @itemx for all butthe �rst entry; @itemx should always follow an @item command. The @itemx commandworks exactly like @item except that it does not generate extra vertical space above the�rst column text.For example,@table @code@item upcase@itemx downcaseThese two functions accept a character or a string asargument, and return the corresponding upper case (lowercase) character or string.@end table

90 Texinfo 3.12

This produces:
upcasedowncase These two functions accept a character or a string as argument, and return thecorresponding upper case (lower case) character or string.
(Note also that this example illustrates multi-line supporting text in a two-column table.)
11.4 Multi-column Tables

@multitable allows you to construct tables with any number of columns, with eachcolumn having any width you like.You de�ne the column widths on the @multitable line itself, and write each row of theactual table following an @item command, with columns separated by an @tab command.Finally, @end multitable completes the table. Details in the sections below.
11.4.1 Multitable Column Widths

You can de�ne the column widths for a multitable in two ways: as fractions of the linelength; or with a prototype row. Mixing the two methods is not supported. In either case,the widths are de�ned entirely on the same line as the @multitable command.1. To specify column widths as fractions of the line length, write @columnfractions andthe decimal numbers (presumably less than 1) after the @multitable command, as in:@multitable @columnfractions .33 .33 .33The fractions need not add up exactly to 1.0, as these do not. This allows you toproduce tables that do not need the full line length.2. To specify a prototype row, write the longest entry for each column enclosed in bracesafter the @multitable command. For example:@multitable {some text for column one} {for column two}The �rst column will then have the width of the typeset `some text for column one',and the second column the width of `for column two'.The prototype entries need not appear in the table itself.Although we used simple text in this example, the prototype entries can contain Texinfocommands; markup commands such as @code are particularly likely to be useful.
11.4.2 Multitable Rows

After the @multitable command de�ning the column widths (see the previous section),you begin each row in the body of a multitable with @item, and separate the column entrieswith @tab. Line breaks are not special within the table body, and you may break inputlines in your source �le as necessary.Here is a complete example of a multi-column table (the text is from The XEmacs
Users' Manual, see section \Splitting Windows" in XEmacs User's Manual):@multitable @columnfractions .15 .45 .4@item Key @tab Command @tab Description@item C-x 2

Chapter 11: Lists and Tables 91

@tab @code{split-window-vertically}@tab Split the selected window into two windows,with one above the other.@item C-x 3@tab @code{split-window-horizontally}@tab Split the selected window into two windowspositioned side by side.@item C-Mouse-2@tab@tab In the mode line or scroll bar of a window,split that window.@end multitableproduces:Key Command DescriptionC-x 2 split-window-vertically Split the selected window intotwo windows, with one above theother.C-x 3 split-window-horizontally Split the selected window into twowindows positioned side by side.C-Mouse-2 In the mode line or scroll bar of awindow, split that window.

92 Texinfo 3.12

Chapter 12: Creating Indices 93

12 Creating Indices

Using Texinfo, you can generate indices without having to sort and collate entriesmanually. In an index, the entries are listed in alphabetical order, together with informationon how to �nd the discussion of each entry. In a printed manual, this information consistsof page numbers. In an Info �le, this information is a menu entry leading to the �rst nodereferenced.
Texinfo provides several prede�ned kinds of index: an index for functions, an index forvariables, an index for concepts, and so on. You can combine indices or use them for otherthan their canonical purpose. If you wish, you can de�ne your own indices.

12.1 Making Index Entries
When you are making index entries, it is good practice to think of the di�erent wayspeople may look for something. Di�erent people do not think of the same words whenthey look something up. A helpful index will have items indexed under all the di�erentwords that people may use. For example, one reader may think it obvious that the two-letter names for indices should be listed under \Indices, two-letter names", since the word\Index" is the general concept. But another reader may remember the speci�c concept oftwo-letter names and search for the entry listed as \Two letter names for indices". A goodindex will have both entries and will help both readers.
Like typesetting, the construction of an index is a highly skilled, professional art, thesubtleties of which are not appreciated until you need to do it yourself.
See Section 4.1 [Printing Indices & Menus], page 39, for information about printing anindex at the end of a book or creating an index menu in an Info �le.

12.2 Prede�ned Indices
Texinfo provides six prede�ned indices:

� A concept index listing concepts that are discussed.
� A function index listing functions (such as entry points of libraries).
� A variables index listing variables (such as global variables of libraries).
� A keystroke index listing keyboard commands.
� A program index listing names of programs.
� A data type index listing data types (such as structures de�ned in header �les).

Not every manual needs all of these, and most manuals use two or three of them. Thismanual has two indices: a concept index and an @-command index (that is actually thefunction index but is called a command index in the chapter heading). Two or moreindices can be combined into one using the @synindex or @syncodeindex commands. SeeSection 12.4 [Combining Indices], page 95.

94 Texinfo 3.12

12.3 De�ning the Entries of an Index
The data to make an index come from many individual indexing commands scatteredthroughout the Texinfo source �le. Each command says to add one entry to a particularindex; after formatting, the index will give the current page number or node name as thereference.An index entry consists of an indexing command at the beginning of a line followed,on the rest of the line, by the entry.For example, this section begins with the following �ve entries for the concept index:@cindex Defining indexing entries@cindex Index entries@cindex Entries for an index@cindex Specifying index entries@cindex Creating index entriesEach prede�ned index has its own indexing command|@cindex for the concept index,@findex for the function index, and so on.Concept index entries consist of text. The best way to write an index is to chooseentries that are terse yet clear. If you can do this, the index often looks better if the entriesare not capitalized, but written just as they would appear in the middle of a sentence.(Capitalize proper names and acronyms that always call for upper case letters.) This is thecase convention we use in most GNU manuals' indices.If you don't see how to make an entry terse yet clear, make it longer and clear|notterse and confusing. If many of the entries are several words long, the index may lookbetter if you use a di�erent convention: to capitalize the �rst word of each entry. But donot capitalize a case-sensitive name such as a C or Lisp function name or a shell command;that would be a spelling error.Whichever case convention you use, please use it consistently!Entries in indices other than the concept index are symbol names in programminglanguages, or program names; these names are usually case-sensitive, so use upper andlower case as required for them.By default, entries for a concept index are printed in a small roman font and entriesfor the other indices are printed in a small @code font. You may change the way part of anentry is printed with the usual Texinfo commands, such as @file for �le names and @emphfor emphasis (see Chapter 9 [Marking Text], page 69).The six indexing commands for prede�ned indices are:

@cindex conceptMake an entry in the concept index for concept.
@findex functionMake an entry in the function index for function.
@vindex variableMake an entry in the variable index for variable.
@kindex keystrokeMake an entry in the key index for keystroke.

Chapter 12: Creating Indices 95

@pindex programMake an entry in the program index for program.
@tindex data typeMake an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates themenu entry name from the node name. An extra colon confuses Info. SeeSection 7.2 [The Parts of a Menu], page 56, for more information about thestructure of a menu entry.If you write several identical index entries in di�erent places in a Texinfo �le, the indexin the printed manual will list all the pages to which those entries refer. However, theindex in the Info �le will list only the node that references the �rst of those index entries.Therefore, it is best to write indices in which each entry refers to only one place in theTexinfo �le. Fortunately, this constraint is a feature rather than a loss since it means thatthe index will be easy to use. Otherwise, you could create an index that lists several pagesfor one entry and your reader would not know to which page to turn. If you have twoidentical entries for one topic, change the topics slightly, or qualify them to indicate thedi�erence.You are not actually required to use the prede�ned indices for their canonical purposes.For example, suppose you wish to index some C preprocessor macros. You could put themin the function index along with actual functions, just by writing @findex commands forthem; then, when you print the \Function Index" as an unnumbered chapter, you couldgive it the title `Function and Macro Index' and all will be consistent for the reader. Oryou could put the macros in with the data types by writing @tindex commands for them,and give that index a suitable title so the reader will understand. (See Section 4.1 [PrintingIndices & Menus], page 39.)
12.4 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and con-cepts, perhaps because you have few enough of one of them that a separate index for themwould look silly.You could put functions into the concept index by writing @cindex commands for theminstead of @findex commands, and produce a consistent manual by printing the conceptindex with the title `Function and Concept Index' and not printing the `Function Index' atall; but this is not a robust procedure. It works only if your document is never includedas part of another document that is designed to have a separate function index; if yourdocument were to be included with such a document, the functions from your documentand those from the other would not end up together. Also, to make your function namesappear in the right font in the concept index, you would need to enclose every one of thembetween the braces of @code.
12.4.1 @syncodeindex

When you want to combine functions and concepts into one index, you should index thefunctions with @findex and index the concepts with @cindex, and use the @syncodeindexcommand to redirect the function index entries into the concept index.

96 Texinfo 3.12

The @syncodeindex command takes two arguments; they are the name of the indexto redirect, and the name of the index to redirect it to. The template looks like this:@syncodeindex from toFor this purpose, the indices are given two-letter names:
`cp' concept index
`fn' function index
`vr' variable index
`ky' key index
`pg' program index
`tp' data type index

Write an @syncodeindex command before or shortly after the end-of-header line at thebeginning of a Texinfo �le. For example, to merge a function index with a concept index,write the following:@syncodeindex fn cpThis will cause all entries designated for the function index to merge in with the conceptindex instead.To merge both a variables index and a function index into a concept index, write thefollowing:@syncodeindex vr cp@syncodeindex fn cpThe @syncodeindex command puts all the entries from the `from' index (the redirectedindex) into the @code font, overriding whatever default font is used by the index to whichthe entries are now directed. This way, if you direct function names from a function indexinto a concept index, all the function names are printed in the @code font as you wouldexpect.
12.4.2 @synindex

The @synindex command is nearly the same as the @syncodeindex command, exceptthat it does not put the `from' index entries into the @code font; rather it puts them inthe roman font. Thus, you use @synindex when you merge a concept index into a functionindex.See Section 4.1 [Printing Indices & Menus], page 39, for information about printing anindex at the end of a book or creating an index menu in an Info �le.
12.5 De�ning New Indices

In addition to the prede�ned indices, you may use the @defindex and @defcodeindexcommands to de�ne new indices. These commands create new indexing @-commands withwhich you mark index entries. The @defindex command is used like this:@defindex nameThe name of an index should be a two letter word, such as `au'. For example:

Chapter 12: Creating Indices 97

@defindex auThis de�nes a new index, called the `au' index. At the same time, it creates a newindexing command, @auindex, that you can use to make index entries. Use the new indexingcommand just as you would use a prede�ned indexing command.For example, here is a section heading followed by a concept index entry and two `au'index entries.@section Cognitive Semantics@cindex kinesthetic image schemas@auindex Johnson, Mark@auindex Lakoff, George(Evidently, `au' serves here as an abbreviation for \author".) Texinfo constructs the newindexing command by concatenating the name of the index with `index'; thus, de�ning an`au' index leads to the automatic creation of an @auindex command.Use the @printindex command to print the index, as you do with the prede�nedindices. For example:@node Author Index, Subject Index, , Top@unnumbered Author Index
@printindex auThe @defcodeindex is like the @defindex command, except that, in the printed output,it prints entries in an @code font instead of a roman font. Thus, it parallels the @findexcommand rather than the @cindex command.You should de�ne new indices within or right after the end-of-header line of a Texinfo�le, before any @synindex or @syncodeindex commands (see Section 3.2 [Header], page 26).

98 Texinfo 3.12

Chapter 13: Special Insertions 99

13 Special Insertions

Texinfo provides several commands for inserting characters that have special meaningin Texinfo, such as braces, and for other graphic elements that do not correspond to simplecharacters you can type.These are:
� Braces, `@' and periods.
� Whitespace within and around a sentence.
� Accents.
� Dots and bullets.
� The TEX logo and the copyright symbol.
� Mathematical expressions.
13.1 Inserting @and Braces

`@' and curly braces are special characters in Texinfo. To insert these characters sothey appear in text, you must put an `@' in front of these characters to prevent Texinfofrom misinterpreting them.Do not put braces after any of these commands; they are not necessary.
13.1.1 Inserting ` @' with @@

@@ stands for a single `@' in either printed or Info output.Do not put braces after an @@ command.
13.1.2 Inserting ` { ' and ` } 'with @{and @}

@{ stands for a single `{' in either printed or Info output.
@} stands for a single `}' in either printed or Info output.Do not put braces after either an @{ or an @} command.

13.2 Inserting Space
The following sections describe commands that control spacing of various kinds withinand after sentences.

13.2.1 Not Ending a Sentence

Depending on whether a period or exclamation point or question mark is inside or atthe end of a sentence, less or more space is inserted after a period in a typeset manual. Sinceit is not always possible for Texinfo to determine when a period ends a sentence and when itis used in an abbreviation, special commands are needed in some circumstances. (Usually,Texinfo can guess how to handle periods, so you do not need to use the special commands;you just enter a period as you would if you were using a typewriter, which means you puttwo spaces after the period, question mark, or exclamation mark that ends a sentence.)

100 Texinfo 3.12

Use the @: command after a period, question mark, exclamation mark, or colon thatshould not be followed by extra space. For example, use @: after periods that end abbrevi-ations which are not at the ends of sentences.For example,The s.o.p.@: has three parts ...The s.o.p. has three parts ...produces the following. If you look carefully at this printed output, you will see a littlemore whitespace after `s.o.p.' in the second line.The s.o.p. has three parts . . .The s.o.p. has three parts . . .(Incidentally, `s.o.p.' is an abbreviation for \Standard Operating Procedure".)@: has no e�ect on the Info output. Do not put braces after @:.
13.2.2 Ending a Sentence

Use @. instead of a period, @! instead of an exclamation point, and @? instead of aquestion mark at the end of a sentence that ends with a single capital letter. Otherwise,TEX will think the letter is an abbreviation and will not insert the correct end-of-sentencespacing. Here is an example:Give it to M.I.B. and to M.E.W@. Also, give it to R.J.C@.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.produces the following. If you look carefully at this printed output, you will see a littlemore whitespace after the `W' in the �rst line.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.In the Info �le output, @. is equivalent to a simple `.'; likewise for @! and @?.The meanings of @: and @. in Texinfo are designed to work well with the Emacssentence motion commands (see section \Sentences" in XEmacs User's Manual). Thismade it necessary for them to be incompatible with some other formatting systems thatuse @-commands.Do not put braces after any of these commands.
13.2.3 Multiple Spaces

Ordinarily, TEX collapses multiple whitespace characters (space, tab, and newline) intoa single space. Info output, on the other hand, preserves whitespace as you type it, exceptfor changing a newline into a space; this is why it is important to put two spaces at the endof sentences in Texinfo documents.Occasionally, you may want to actually insert several consecutive spaces, either forpurposes of example (what your program does with multiple spaces as input), or merelyfor purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACErepresentsan `@' character followed by a space, i.e., `@ ', and TABand NL represent the tab characterand end-of-line, i.e., when `@' is the last character on a line.)For example,

Chapter 13: Special Insertions 101

Spacey@ @ @ @example.producesSpacey example.Other possible uses of @SPACEhave been subsumed by @multitable (see Section 11.4[Multi-column Tables], page 90).Do not follow any of these commands with braces.
13.2.4 @dmn{dimension } : Format a Dimension

At times, you may want to write `12 pt' or `8.5 in' with little or no space betweenthe number and the abbreviation for the dimension. You can use the @dmn command to dothis. On seeing the command, TEX inserts just enough space for proper typesetting; theInfo formatting commands insert no space at all, since the Info �le does not require it.To use the @dmn command, write the number and then follow it immediately, with nointervening space, by @dmn, and then by the dimension within braces. For example,A4 paper is 8.27@dmn{in} wide.producesA4 paper is 8.27 in wide.Not everyone uses this style. Some people prefer `8.27 in.@:' or `8.27 inches' to`8.27@dmn{in}' in the Texinfo �le. In these cases, however, the formatters may insert a linebreak between the number and the dimension, so use @w (see Section 14.3 [w], page 110).Also, if you write a period after an abbreviation within a sentence, you should write `@:' afterthe period to prevent TEX from inserting extra whitespace, as shown here. See Section 13.2[Inserting Space], page 99.
13.3 Inserting Accents

Here is a table with the commands Texinfo provides for inserting
oating accents. Thecommands with non-alphabetic names do not take braces around their argument (which istaken to be the next character). (Exception: @, does take braces around its argument.)This is so as to make the source as convenient to type and read as possible, since accentedcharacters are very common in some languages.Command Output What@"o �o umlaut accent@'o �o acute accent@,{c} �c cedilla accent@=o �o macron/overbar accent@^o ô circum
ex accent@`o �o grave accent@~o ~o tilde accent@dotaccent{o} _o overdot accent@H{o} }o long Hungarian umlaut@ringaccent{o} �o ring accent@tieaccent{oo} �oo tie-after accent

102 Texinfo 3.12

@u{o} �o breve accent@ubaraccent{o} o� underbar accent@udotaccent{o} o. underdot accent@v{o} �o hacek or check accentThis table lists the Texinfo commands for inserting other characters commonly used inlanguages other than English.
@exclamdown{} < upside-down !@questiondown{} > upside-down ?@aa{},@AA{} �a,�A A,a with circle@ae{},@AE{} �,� ae,AE ligatures@dotless{i} � dotless i@dotless{j} � dotless j@l{},@L{} l, L suppressed-L,l@o{},@O{} �,� O,o with slash@oe{},@OE{} �,� OE,oe ligatures@ss{} � es-zet or sharp S
13.4 Inserting Ellipsis, Dots, and Bullets

An ellipsis (a line of dots) is not typeset as a string of periods, so a special command isused for ellipsis in Texinfo. The @bullet command is special, too. Each of these commandsis followed by a pair of braces, `{}', without any whitespace between the name of thecommand and the braces. (You need to use braces with these commands because you canuse them next to other text; without the braces, the formatters would be confused. SeeAppendix I [@-Command Syntax], page 201, for further information.)
13.4.1 @dots{} (. . .)

Use the @dots{} command to generate an ellipsis, which is three dots in a row, appro-priately spaced, like this: `. . . '. Do not simply write three periods in the input �le; thatwould work for the Info �le output, but would produce the wrong amount of space betweenthe periods in the printed manual.Similarly, the @enddots{} command generates an end-of-sentence ellipsis (four dots). . . .Here is an ellipsis: . . . Here are three periods in a row: ...In printed output, the three periods in a row are closer together than the dots in theellipsis.
13.4.2 @bullet{} (�)

Use the @bullet{} command to generate a large round dot, or the closest possiblething to one. In Info, an asterisk is used.Here is a bullet: �When you use @bullet in @itemize, you do not need to type the braces, because@itemize supplies them. (See Section 11.1 [@itemize], page 85.)

Chapter 13: Special Insertions 103

13.5 Inserting TEX and the Copyright Symbol
The logo `TEX' is typeset in a special fashion and it needs an @-command. The copyrightsymbol, ` c
', is also special. Each of these commands is followed by a pair of braces, `{}',without any whitespace between the name of the command and the braces.

13.5.1 @TeX{}(TEX)

Use the @TeX{} command to generate `TEX'. In a printed manual, this is a special logothat is di�erent from three ordinary letters. In Info, it just looks like `TeX'. The @TeX{}command is unique among Texinfo commands in that the T and the X are in upper case.
13.5.2 @copyright{} (c
)

Use the @copyright{} command to generate ` c
'. In a printed manual, this is a `c'inside a circle, and in Info, this is `(C)'.
13.6 @pounds{}($): Pounds Sterling

Use the @pounds{} command to generate `$'. In a printed manual, this is the symbolfor the currency pounds sterling. In Info, it is a `#'. Other currency symbols are unfortu-nately not available.
13.7 @minus{} (�): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a �xed-width font, this is asingle hyphen, but in a proportional font, the symbol is the customary length for a minussign|a little longer than a hyphen, shorter than an em-dash:`�' is a minus sign generated with `@minus{}',
`-' is a hyphen generated with the character `-',
`|' is an em-dash for text.

In the �xed-width font used by Info, @minus{} is the same as a hyphen.
You should not use @minus{} inside @code or @example because the width distinctionis not made in the �xed-width font they use.
When you use @minus to specify the mark beginning each entry in an itemized list, youdo not need to type the braces (see Section 11.1 [@itemize], page 85.)

13.8 @math- Inserting Mathematical Expressions
You can write a short mathematical expression with the @math command. Write themathematical expression between braces, like this:
@math{(a + b)(a + b) = a^2 + 2ab + b^2}

104 Texinfo 3.12

This produces the following in TEX:(a + b)(a + b) = a^2 + 2ab + b^2and the following in Info:(a + b)(a + b) = a^2 + 2ab + b^2Thus, the @math command has no e�ect on the Info output.For complex mathematical expressions, you can also use TEX directly (see Section 17.2[Raw Formatter Commands], page 128). When you use TEX directly, remember to writethe mathematical expression between one or two `$' (dollar-signs) as appropriate.
13.9 Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited by @example and@end example, or by @lisp and @end lisp. In such examples, you can indicate the results ofevaluation or an expansion using `)' or ` 7!'. Likewise, there are commands to insert glyphsto indicate printed output, error messages, equivalence of expressions, and the location ofpoint.The glyph-insertion commands do not need to be used within an example, but mostoften they are. Every glyph-insertion command is followed by a pair of left- and right-handbraces.
) @result{} points to the result of an expression.
7! @expansion{} shows the results of a macro expansion.
a @print{} indicates printed output.
error @error{} indicates that the following text is an error message.
� @equiv{} indicates the exact equivalence of two forms.
? @point{} shows the location of point.
13.9.1 @result{} ()): Indicating Evaluation

Use the @result{} command to indicate the result of evaluating an expression.The @result{} command is displayed as `=>' in Info and as `)' in the printed output.Thus, the following,(cdr '(1 2 3))) (2 3)may be read as \(cdr '(1 2 3)) evaluates to (2 3)".
13.9.2 @expansion{} (7!): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicatethe result of the expansion with the @expansion{} command.The @expansion{} command is displayed as `==>' in Info and as ` 7!' in the printedoutput.

Chapter 13: Special Insertions 105

For example, the following@lisp(third '(a b c))@expansion{} (car (cdr (cdr '(a b c))))@result{} c@end lispproduces(third '(a b c))7! (car (cdr (cdr '(a b c))))) cwhich may be read as:(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of eval-uating the expression is c.Often, as in this case, an example looks better if the @expansion{} and @result{} com-mands are indented �ve spaces.
13.9.3 @print{} (a): Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate theprinted output with the @print{} command.The @print{} command is displayed as `-|' in Info and as ` a ' in the printed output.In the following example, the printed text is indicated with ` a ', and the value of theexpression follows on the last line.(progn (print 'foo) (print 'bar))a fooa bar) barIn a Texinfo source �le, this example is written as follows:@lisp(progn (print 'foo) (print 'bar))@print{} foo@print{} bar@result{} bar@end lisp
13.9.4 @error{} (error): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the errormessage with the @error{} command.The @error{} command is displayed as `error-->' in Info and as ` error ' in theprinted output.Thus,@lisp(+ 23 'x)@error{} Wrong type argument: integer-or-marker-p, x

106 Texinfo 3.12

@end lispproduces(+ 23 'x)error Wrong type argument: integer-or-marker-p, xThis indicates that the following error message is printed when you evaluate the expression:Wrong type argument: integer-or-marker-p, x` error ' itself is not part of the error message.
13.9.5 @equiv{} (�): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equiv-alence of two forms with the @equiv{} command.The @equiv{} command is displayed as `==' in Info and as `� ' in the printed output.Thus,@lisp(make-sparse-keymap) @equiv{} (list 'keymap)@end lispproduces(make-sparse-keymap) � (list 'keymap)This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-ating (list 'keymap).
13.9.6 @point{} (?): Indicating Point in a Bu�er

Sometimes you need to show an example of text in an Emacs bu�er. In such examples,the convention is to include the entire contents of the bu�er in question between two linesof dashes containing the bu�er name.You can use the `@point{}' command to show the location of point in the text in thebu�er. (The symbol for point, of course, is not part of the text in the bu�er; it indicatesthe place between two characters where point is located.)The @point{} command is displayed as `-!-' in Info and as `?' in the printed output.The following example shows the contents of bu�er `foo' before and after evaluating aLisp command to insert the word changed.---------- Buffer: foo ----------This is the ?contents of foo.---------- Buffer: foo ----------
(insert "changed ")) nil---------- Buffer: foo ----------This is the changed ?contents of foo.---------- Buffer: foo ----------

In a Texinfo source �le, the example is written like this:

Chapter 13: Special Insertions 107

@example---------- Buffer: foo ----------This is the @point{}contents of foo.---------- Buffer: foo ----------
(insert "changed ")@result{} nil---------- Buffer: foo ----------This is the changed @point{}contents of foo.---------- Buffer: foo ----------@end example

13.10 Inserting Images
You can insert an image in an external �le with the @image command:@image{�lename, [width], [height]}The �lename argument is mandatory, and must not have an extension, because thedi�erent processors support di�erent formats: TEX reads the �le `�lename.eps' (Encapsu-lated PostScript format); makeinfo uses `�lename.txt' verbatim for Info output (more orless as if it was an @example). HTML output requires `�lename.jpg'.The optional width and height arguments specify the size to scale the image to (theyare ignored for Info output). If they are both speci�ed, the image is presented in its naturalsize (given in the �le); if only one is speci�ed, the other is scaled proportionately; and if bothare speci�ed, both are respected, thus possibly distorting the original image by changingits aspect ratio.The width and height may be speci�ed using any valid TEX dimension, namely:

pt point (72.27pt = 1in)
pc pica (1pc = 12pt)
bp big point (72bp = 1in)
in inch
cm centimeter (2.54cm = 1in)
mm millimeter (10mm = 1cm)
dd didôt point (1157dd = 1238pt)
cc cicero (1cc = 12dd)
sp scaled point (65536sp = 1pt)

For example, the following will scale a �le `ridt.eps' to one inch vertically, with thewidth scaled proportionately:@image{ridt,,1in}For @image to work with TEX, the �le `epsf.tex' must be installed somewhere thatTEX can �nd it. This �le is included in the Texinfo distribution and is available fromftp://ftp.tug.org/tex/epsf.tex.

ftp://ftp.tug.org/tex/epsf.tex

108 Texinfo 3.12

Chapter 14: Making and Preventing Breaks 109

14 Making and Preventing Breaks

Usually, a Texinfo �le is processed both by TEX and by one of the Info formattingcommands. Line, paragraph, or page breaks sometimes occur in the `wrong' place in oneor other form of output. You must ensure that text looks right both in the printed manualand in the Info �le.For example, in a printed manual, page breaks may occur awkwardly in the middle ofan example; to prevent this, you can hold text together using a grouping command thatkeeps the text from being split across two pages. Conversely, you may want to force a pagebreak where none would occur normally. Fortunately, problems like these do not often arise.When they do, use the break, break prevention, or pagination commands.
The break commands create or allow line and paragraph breaks:

@* Force a line break.
@sp n Skip n blank lines.
@- Insert a discretionary hyphen.
@hyphenation{hy-phen-a-ted words}De�ne hyphen points in hy-phen-a-ted words.

The line-break-prevention command holds text together all on one line:
@w{text } Prevent text from being split and hyphenated across two lines.

The pagination commands apply only to printed output, since Info �les do not havepages.
@page Start a new page in the printed manual.
@group Hold text together that must appear on one printed page.
@need mils Start a new printed page if not enough space on this one.
14.1 @*: Generate Line Breaks

The @* command forces a line break in both the printed manual and in Info.For example,
This line @* is broken @*in two places.produces
This lineis brokenin two places.(Note that the space after the �rst @* command is faithfully carried down to the next line.)The @* command is often used in a �le's copyright page:

110 Texinfo 3.12

This is edition 2.0 of the Texinfo documentation,@*and is for ...
In this case, the @* command keeps TEX from stretching the line across the whole page inan ugly manner.

Please note:Do not write braces after an @* command; they are not needed.
Do not write an @refill command at the end of a paragraph containing an @*command; it will cause the paragraph to be re�lled after the line break occurs,negating the e�ect of the line break.

14.2 @-and @hyphenation: Helping TEX hyphenate
Although TEX's hyphenation algorithm is generally pretty good, it does miss usefulhyphenation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.)So, for documents with an unusual vocabulary or when �ne-tuning for a printed edition,you may wish to help TEX out. Texinfo supports two commands for this:

@- Insert a discretionary hyphen, i.e., a place where TEX can (but does not haveto) hyphenate. This is especially useful when you notice an overfull hbox is dueto TEX missing a hyphenation (see Section 19.9 [Overfull hboxes], page 140).TEX will not insert any hyphenation points in a word containing @-.
@hyphenation{hy-phen-a-ted words}Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a `-' ateach hyphenation point. For example:

@hyphenation{man-u-script man-u-scripts}
TEX only uses the speci�ed hyphenation points when the words match exactly,so give all necessary variants.

Info output is not hyphenated, so these commands have no e�ect there.
14.3 @w{text } : Prevent Line Breaks

@w{text } outputs text and prohibits line breaks within text .
You can use the @w command to prevent TEX from automatically hyphenating a longname or phrase that happens to fall near the end of a line.
You can copy GNU software from @w{@samp{ftp.gnu.ai.mit.edu}}.

produces
You can copy GNU software from `ftp.gnu.ai.mit.edu'.
Caution: Do not write an @refill command at the end of a paragraph contain-ing an @w command; it will cause the paragraph to be re�lled and may therebynegate the e�ect of the @w command.

Chapter 14: Making and Preventing Breaks 111

14.4 @spn: Insert Blank Lines
A line beginning with and containing only @sp n generates n blank lines of space inboth the printed manual and the Info �le. @sp also forces a paragraph break. For example,
@sp 2

generates two blank lines.
The @sp command is most often used in the title page.

14.5 @page: Start a New Page
A line containing only @page starts a new page in a printed manual. The commandhas no e�ect on Info �les since they are not paginated. An @page command is often usedin the @titlepage section of a Texinfo �le to start the copyright page.

14.6 @group: Prevent Page Breaks
The @group command (on a line by itself) is used inside an @example or similar con-struct to begin an unsplittable vertical group, which will appear entirely on one page in theprinted output. The group is terminated by a line containing only @end group. These twolines produce no output of their own, and in the Info �le output they have no e�ect at all.
Although @group would make sense conceptually in a wide variety of contexts, itscurrent implementation works reliably only within @example and variants, and within@display, @format, @flushleft and @flushright. See Chapter 10 [Quotations and Ex-amples], page 79. (What all these commands have in common is that each line of inputproduces a line of output.) In other contexts, @group can cause anomalous vertical spacing.
This formatting requirement means that you should write:
@example@group...@end group@end example

with the @group and @end group commands inside the @example and @end example com-mands.
The @group command is most often used to hold an example together on one page. Inthis Texinfo manual, more than 100 examples contain text that is enclosed between @groupand @end group.
If you forget to end a group, you may get strange and unfathomable error messageswhen you run TEX. This is because TEX keeps trying to put the rest of the Texinfo �leonto the one page and does not start to generate error messages until it has processedconsiderable text. It is a good rule of thumb to look for a missing @end group if you getincomprehensible error messages in TEX.

112 Texinfo 3.12

14.7 @needmils : Prevent Page Breaks
A line containing only @need n starts a new page in a printed manual if fewer than nmils (thousandths of an inch) remain on the current page. Do not use braces around theargument n. The @need command has no e�ect on Info �les since they are not paginated.This paragraph is preceded by an @need command that tells TEX to start a new pageif fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:@need 800This paragraph is preceded by ...The @need command is useful for preventing orphans (single lines at the bottoms ofprinted pages).

Chapter 15: De�nition Commands 113

15 De�nition Commands

The @deffn command and the other de�nition commands enable you to describe func-tions, variables, macros, commands, user options, special forms and other such artifacts ina uniform format.In the Info �le, a de�nition causes the entity category|`Function', `Variable', orwhatever|to appear at the beginning of the �rst line of the de�nition, followed by theentity's name and arguments. In the printed manual, the command causes TEX to print theentity's name and its arguments on the left margin and print the category next to the rightmargin. In both output formats, the body of the de�nition is indented. Also, the name ofthe entity is entered into the appropriate index: @deffn enters the name into the index offunctions, @defvr enters it into the index of variables, and so on.A manual need not and should not contain more than one de�nition for a given name.An appendix containing a summary should use @table rather than the de�nition commands.
15.1 The Template for a De�nition

The @deffn command is used for de�nitions of entities that resemble functions. Towrite a de�nition using the @deffn command, write the @deffn command at the beginningof a line and follow it on the same line by the category of the entity, the name of the entityitself, and its arguments (if any). Then write the body of the de�nition on succeeding lines.(You may embed examples in the body.) Finally, end the de�nition with an @end deffncommand written on a line of its own. (The other de�nition commands follow the sameformat.)The template for a de�nition looks like this:@deffn category name arguments...
body-of-de�nition@end deffnFor example,@deffn Command forward-word countThis command moves point forward @var{count} words(or backward if @var{count} is negative). ...@end deffnproduces

Commandforward-word countThis function moves point forward count words (or backward if count isnegative). . . .
Capitalize the category name like a title. If the name of the category contains spaces,as in the phrase `Interactive Command', write braces around it. For example:@deffn {Interactive Command} isearch-forward...@end deffnOtherwise, the second word will be mistaken for the name of the entity.

114 Texinfo 3.12

Some of the de�nition commands are more general than others. The @deffn command,for example, is the general de�nition command for functions and the like|for entities thatmay take arguments. When you use this command, you specify the category to which theentity belongs. The @deffn command possesses three prede�ned, specialized variations,@defun, @defmac, and @defspec, that specify the category for you: \Function", \Macro",and \Special Form" respectively. (In Lisp, a special form is an entity much like a function.)The @defvr command also is accompanied by several prede�ned, specialized variations fordescribing particular kinds of variables.The template for a specialized de�nition, such as @defun, is similar to the template fora generalized de�nition, except that you do not need to specify the category:@defun name arguments...
body-of-de�nition@end defunThus, @defun buffer-end flagThis function returns @code{(point-min)} if @var{flag}is less than 1, @code{(point-max)} otherwise....@end defunproduces

Functionbu�er-end
agThis function returns (point-min) if
ag is less than 1, (point-max)otherwise. . . .
See Section 15.6 [A Sample Function De�nition], page 123, for a more detailed example ofa function de�nition, including the use of @example inside the de�nition.The other specialized commands work like @defun.
15.2 Optional and Repeated Arguments

Some entities take optional or repeated arguments, which may be speci�ed by a distinc-tive glyph that uses square brackets and ellipses. For example, a special form often breaksits argument list into separate arguments in more complicated ways than a straightforwardfunction.An argument enclosed within square brackets is optional. Thus, the phrase `[optional-
arg]' means that optional-arg is optional. An argument followed by an ellipsis is optionaland may be repeated more than once. Thus, `repeated-args...' stands for zero or morearguments. Parentheses are used when several arguments are grouped into additional levelsof list structure in Lisp.Here is the @defspec line of an example of an imaginary special form:

Special Formfoobar (var [from to [inc]]) body . . .

In this example, the arguments from and to are optional, but must both be present or bothabsent. If they are present, inc may optionally be speci�ed as well. These arguments are

Chapter 15: De�nition Commands 115

grouped with the argument var into a list, to distinguish them from body, which includesall remaining elements of the form.
In a Texinfo source �le, this @defspec line is written like this (except it would not besplit over two lines, as it is in this example).
@defspec foobar (@var{var} [@var{from} @var{to}[@var{inc}]]) @var{body}@dots{}The function is listed in the Command and Variable Index under `foobar'.

15.3 Two or More `First' Lines
To create two or more `�rst' or header lines for a de�nition, follow the �rst @deffnline by a line beginning with @deffnx. The @deffnx command works exactly like @deffnexcept that it does not generate extra vertical white space between it and the precedingline. For example,
@deffn {Interactive Command} isearch-forward@deffnx {Interactive Command} isearch-backwardThese two search commands are similar except ...@end deffnproduces

Interactive Commandisearch-forward Interactive Commandisearch-backwardThese two search commands are similar except . . .
Each of the other de�nition commands has an `x' form: @defunx, @defvrx,@deftypefunx, etc.
The `x' forms work just like @itemx; see Section 11.3.2 [@itemx], page 89.

15.4 The De�nition Commands
Texinfo provides more than a dozen de�nition commands, all of which are described inthis section.
The de�nition commands automatically enter the name of the entity in the appropriateindex: for example, @deffn, @defun, and @defmac enter function names in the index offunctions; @defvr and @defvar enter variable names in the index of variables.
Although the examples that follow mostly illustrate Lisp, the commands can be usedfor other programming languages.

15.4.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities:

116 Texinfo 3.12

@deffn category name arguments...The @deffn command is the general de�nition command for functions, interac-tive commands, and similar entities that may take arguments. You must choosea term to describe the category of entity being de�ned; for example, \Function"could be used if the entity is a function. The @deffn command is written at thebeginning of a line and is followed on the same line by the category of entitybeing described, the name of this particular entity, and its arguments, if any.Terminate the de�nition with @end deffn on a line of its own.For example, here is a de�nition:
@deffn Command forward-char ncharsMove point forward @var{nchars} characters.@end deffnThis shows a rather terse de�nition for a \command" named forward-charwith one argument, nchars.

@deffn prints argument names such as nchars in italics or upper case, as if @varhad been used, because we think of these names as metasyntactic variables|they stand for the actual argument values. Within the text of the description,write an argument name explicitly with @var to refer to the value of the argu-ment. In the example above, we used `@var{nchars}' in this way.
The template for @deffn is:

@deffn category name arguments...
body-of-de�nition@end deffn

@defun name arguments...The @defun command is the de�nition command for functions. @defun is equiv-alent to `@deffn Function ...'.For example,
@defun set symbol new-valueChange the value of the symbol @var{symbol}to @var{new-value}.@end defunshows a rather terse de�nition for a function set whose arguments are symboland new-value. The argument names on the @defun line automatically appearin italics or upper case as if they were enclosed in @var. Terminate the de�nitionwith @end defun on a line of its own.

The template is:
@defun function-name arguments...
body-of-de�nition@end defun

@defun creates an entry in the index of functions.
@defmac name arguments...The @defmac command is the de�nition command for macros. @defmac isequivalent to `@deffn Macro ...' and works like @defun.

Chapter 15: De�nition Commands 117

@defspec name arguments...The @defspec command is the de�nition command for special forms. (In Lisp,a special form is an entity much like a function, see section \Special Forms" in
XEmacs Lisp Reference Manual.) @defspec is equivalent to `@deffn {SpecialForm} ...' and works like @defun.

15.4.2 Variables and Similar Entities

Here are the commands for de�ning variables and similar entities:
@defvr category nameThe @defvr command is a general de�nition command for something like avariable|an entity that records a value. You must choose a term to describethe category of entity being de�ned; for example, \Variable" could be used ifthe entity is a variable. Write the @defvr command at the beginning of a lineand followed it on the same line by the category of the entity and the name ofthe entity.Capitalize the category name like a title. If the name of the category containsspaces, as in the name \User Option", enclose it in braces. Otherwise, thesecond word will be mistaken for the name of the entity. For example,@defvr {User Option} fill-columnThis buffer-local variable specifiesthe maximum width of filled lines....@end defvrTerminate the de�nition with @end defvr on a line of its own.The template is:@defvr category name

body-of-de�nition@end defvr@defvr creates an entry in the index of variables for name.
@defvar nameThe @defvar command is the de�nition command for variables. @defvar isequivalent to `@defvr Variable ...'.For example:@defvar kill-ring...@end defvarThe template is:@defvar name

body-of-de�nition@end defvar@defvar creates an entry in the index of variables for name.
@defopt nameThe @defopt command is the de�nition command for user options, i.e., vari-ables intended for users to change according to taste; Emacs has many such

118 Texinfo 3.12

(see section \Variables" in XEmacs User's Manual). @defopt is equivalent to`@defvr {User Option} ...' and works like @defvar.
15.4.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languagesin which you must declare types of variables and functions, such as C and C++.
@deftypefn category data-type name arguments...The @deftypefn command is the general de�nition command for functions andsimilar entities that may take arguments and that are typed. The @deftypefncommand is written at the beginning of a line and is followed on the same lineby the category of entity being described, the type of the returned value, thename of this particular entity, and its arguments, if any.For example,

@deftypefn {Library Function} int foobar(int @var{foo}, float @var{bar})...@end deftypefn
(where the text before the \. . . ", shown above as two lines, would actually bea single line in a real Texinfo �le) produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)...In a printed manual, it produces:
Library Functionint foobar (int foo, float bar). . .

This means that foobar is a \library function" that returns an int, and itsarguments are foo (an int) and bar (a float).The argument names that you write in @deftypefn are not subject to an im-plicit @var|since the actual names of the arguments in @deftypefn are typi-cally scattered among data type names and keywords, Texinfo cannot �nd themwithout help. Instead, you must write @var explicitly around the argumentnames. In the example above, the argument names are `foo' and `bar'.The template for @deftypefn is:
@deftypefn category data-type name arguments...
body-of-description@end deftypefnNote that if the category or data type is more than one word then it must beenclosed in braces to make it a single argument.If you are describing a procedure in a language that has packages, such as Ada,you might consider using @deftypefn in a manner somewhat contrary to theconvention described in the preceding paragraphs.

Chapter 15: De�nition Commands 119

For example:@deftypefn stacks private push(@var{s}:in out stack;@var{n}:in integer)...@end deftypefn(The @deftypefn arguments are shown split into three lines, but would be asingle line in a real Texinfo �le.)In this instance, the procedure is classi�ed as belonging to the package stacksrather than classi�ed as a `procedure' and its data type is described as private.(The name of the procedure is push, and its arguments are s and n.)
@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments...The @deftypefun command is the specialized de�nition command for functionsin typed languages. The command is equivalent to `@deftypefn Function ...'.Thus, @deftypefun int foobar (int @var{foo}, float @var{bar})...@end deftypefunproduces the following in Info:-- Function: int foobar (int FOO, float BAR)...and the following in a printed manual:
Functionint foobar (int foo, float bar). . .

The template is:@deftypefun type name arguments...
body-of-description@end deftypefun@deftypefun creates an entry in the index of functions for name.

15.4.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typedlanguages. See Section 15.4.3 [Typed Functions], page 118. The general de�nition com-mand @deftypevr corresponds to @deftypefn and the specialized de�nition command@deftypevar corresponds to @deftypefun.
@deftypevr category data-type nameThe @deftypevr command is the general de�nition command for somethinglike a variable in a typed language|an entity that records a value. You mustchoose a term to describe the category of the entity being de�ned; for example,\Variable" could be used if the entity is a variable.

120 Texinfo 3.12

The @deftypevr command is written at the beginning of a line and is followedon the same line by the category of the entity being described, the data type,and the name of this particular entity.For example:@deftypevr {Global Flag} int enable...@end deftypevrproduces the following in Info:-- Global Flag: int enable...and the following in a printed manual:
Global Flagint enable. . .

The template is:@deftypevr category data-type name
body-of-description@end deftypevr

@deftypevr creates an entry in the index of variables for name.
@deftypevar data-type nameThe @deftypevar command is the specialized de�nition command for variablesin typed languages. @deftypevar is equivalent to `@deftypevr Variable ...'.For example:@deftypevar int fubar...@end deftypevarproduces the following in Info:-- Variable: int fubar...and the following in a printed manual:

Variableint fubar. . .
The template is:@deftypevar data-type name

body-of-description@end deftypevar@deftypevar creates an entry in the index of variables for name.
15.4.5 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such asare used in object-oriented programming. A class is a de�ned type of abstract object. An

Chapter 15: De�nition Commands 121

instance of a class is a particular object that has the type of the class. An instance variableis a variable that belongs to the class but for which each instance has its own value.In a de�nition, if the name of a class is truly a name de�ned in the programming systemfor a class, then you should write an @code around it. Otherwise, it is printed in the usualtext font.
@defcv category class nameThe @defcv command is the general de�nition command for variables associatedwith classes in object-oriented programming. The @defcv command is followedby three arguments: the category of thing being de�ned, the class to which itbelongs, and its name. Thus,@defcv {Class Option} Window border-pattern...@end defcvillustrates how you would write the �rst line of a de�nition of the border-pattern class option of the class Window.The template is@defcv category class name...@end defcv@defcv creates an entry in the index of variables.
@defivar class nameThe @defivar command is the de�nition command for instance variables inobject-oriented programming. @defivar is equivalent to `@defcv {InstanceVariable} ...'The template is:@defivar class instance-variable-name

body-of-de�nition@end defivar@defivar creates an entry in the index of variables.
@defop category class name arguments...The @defop command is the general de�nition command for entities that mayresemble methods in object-oriented programming. These entities take argu-ments, as functions do, but are associated with particular classes of objects.For example, some systems have constructs called wrappers that are associatedwith classes as methods are, but that act more like macros than like functions.You could use @defop Wrapper to describe one of these.Sometimes it is useful to distinguish methods and operations. You can think ofan operation as the speci�cation for a method. Thus, a window system mightspecify that all window classes have a method named expose; we would saythat this window system de�nes an expose operation on windows in general.Typically, the operation has a name and also speci�es the pattern of arguments;all methods that implement the operation must accept the same arguments,since applications that use the operation do so without knowing which methodwill implement it.

122 Texinfo 3.12

Often it makes more sense to document operations than methods. For example,window application developers need to know about the expose operation, butneed not be concerned with whether a given class of windows has its own methodto implement this operation. To describe this operation, you would write:@defop Operation windows exposeThe @defop command is written at the beginning of a line and is followed onthe same line by the overall name of the category of operation, the name of theclass of the operation, the name of the operation, and its arguments, if any.The template is:@defop category class name arguments...
body-of-de�nition@end defop@defop creates an entry, such as `expose on windows', in the index of functions.

@defmethod class name arguments...The @defmethod command is the de�nition command for methods in object-oriented programming. A method is a kind of function that implements anoperation for a particular class of objects and its subclasses. In the Lisp Ma-chine, methods actually were functions, but they were usually de�ned withdefmethod.
@defmethod is equivalent to `@defop Method ...'. The command is written atthe beginning of a line and is followed by the name of the class of the method,the name of the method, and its arguments, if any.For example,@defmethod bar-class bar-method argument...@end defmethodillustrates the de�nition for a method called bar-method of the class bar-class.The method takes an argument.The template is:@defmethod class method-name arguments...

body-of-de�nition@end defmethod@defmethod creates an entry, such as `bar-method on bar-class', in the indexof functions.
@deftypemethod class data-type name arguments...The @deftypemethod command is the de�nition command for methods inobject-oriented typed languages, such as C++ and Java. It is similar to the@defmethod command with the addition of the data-type parameter to specifythe return type of the method.
15.4.6 Data Types

Here is the command for data types:

Chapter 15: De�nition Commands 123

@deftp category name attributes...The @deftp command is the generic de�nition command for data types. Thecommand is written at the beginning of a line and is followed on the same lineby the category, by the name of the type (which is a word like int or float),and then by names of attributes of objects of that type. Thus, you could usethis command for describing int or float, in which case you could use datatype as the category. (A data type is a category of certain objects for purposesof deciding which operations can be performed on them.)In Lisp, for example, pair names a particular data type, and an object of thattype has two slots called the car and the cdr . Here is how you would writethe �rst line of a de�nition of pair.@deftp {Data type} pair car cdr...@end deftpThe template is:@deftp category name-of-type attributes...
body-of-de�nition@end deftp@deftp creates an entry in the index of data types.

15.5 Conventions for Writing De�nitions
When you write a de�nition using @deffn, @defun, or one of the other de�nitioncommands, please take care to use arguments that indicate the meaning, as with the countargument to the forward-word function. Also, if the name of an argument contains thename of a type, such as integer, take care that the argument actually is of that type.

15.6 A Sample Function De�nition
A function de�nition uses the @defun and @end defun commands. The name of thefunction follows immediately after the @defun command and it is followed, on the sameline, by the parameter list.Here is a de�nition from section \Calling Functions" in XEmacs Lisp Reference Manual.

Functionapply function &rest argumentsapply calls function with arguments, just like funcall but with one dif-ference: the last of arguments is a list of arguments to give to function,rather than a single argument. We also say that this list is appendedtothe other arguments.apply returns the result of calling function. As with funcall, functionmust either be a Lisp function or a primitive function; special forms andmacros do not make sense in apply.(setq f 'list)) list(apply f 'x 'y 'z)error Wrong type argument: listp, z

124 Texinfo 3.12

(apply '+ 1 2 '(3 4))) 10(apply '+ '(1 2 3 4))) 10
(apply 'append '((a b c) nil (x y z) nil))) (a b c x y z)An interesting example of using apply is found in the description ofmapcar.

In the Texinfo source �le, this example looks like this:@defun apply function &rest arguments
@code{apply} calls @var{function} with@var{arguments}, just like @code{funcall} but with onedifference: the last of @var{arguments} is a list ofarguments to give to @var{function}, rather than a singleargument. We also say that this list is @dfn{appended}to the other arguments.
@code{apply} returns the result of calling@var{function}. As with @code{funcall},@var{function} must either be a Lisp function or aprimitive function; special forms and macros do not makesense in @code{apply}.
@example(setq f 'list)@result{} list(apply f 'x 'y 'z)@error{} Wrong type argument: listp, z(apply '+ 1 2 '(3 4))@result{} 10(apply '+ '(1 2 3 4))@result{} 10
(apply 'append '((a b c) nil (x y z) nil))@result{} (a b c x y z)@end example
An interesting example of using @code{apply} is foundin the description of @code{mapcar}.@refill@end defunIn this manual, this function is listed in the Command and Variable Index under apply.Ordinary variables and user options are described using a format like that for functionsexcept that variables do not take arguments.

Chapter 16: Footnotes 125

16 Footnotes

A footnote is for a reference that documents or elucidates the primary text.1
16.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command isfollowed immediately by a left brace, then by the text of the footnote, and then by aterminating right brace. Footnotes may be of any length (they will be broken across pagesif necessary), but are usually short. The template is:ordinary text@footnote{text of footnote}As shown here, the @footnote command should come right after the text being foot-noted, with no intervening space; otherwise, the formatters the footnote mark might endup starting up a line.For example, this clause is followed by a sample footnote2; in the Texinfo source, itlooks like this:...a sample footnote@footnote{Here is the samplefootnote.}; in the Texinfo source...
Warning: Don't use footnotes in the argument of the @item command for a @tabletable. This doesn't work, and because of limitations of TEX, there is no way to �x it. Youmust put the footnote into the body text of the table.In a printed manual or book, the reference mark for a footnote is a small, superscriptednumber; the text of the footnote appears at the bottom of the page, below a horizontal line.In Info, the reference mark for a footnote is a pair of parentheses with the footnotenumber between them, like this: `(1)'.

16.2 Footnote Styles
Info has two footnote styles, which determine where the text of the footnote is located:

� In the `End' node style, all the footnotes for a single node are placed at the end of thatnode. The footnotes are separated from the rest of the node by a line of dashes withthe word `Footnotes' within it. Each footnote begins with an `(n)' reference mark.Here is an example of a single footnote in the end of node style:--------- Footnotes ---------
(1) Here is a sample footnote.� In the `Separate' node style, all the footnotes for a single node are placed in an auto-matically constructed node of their own. In this style, a \footnote reference" followseach `(n)' reference mark in the body of the node. The footnote reference is actuallya cross reference which you use to reach the footnote node.

1 A footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style , which is published by the University of Chicago Press.2 Here is the sample footnote.

126 Texinfo 3.12

The name of the node containing the footnotes is constructed by appending`-Footnotes' to the name of the node that contains the footnotes. (Consequently, thefootnotes' node for the `Footnotes' node is `Footnotes-Footnotes'!) The footnotes'node has an `Up' node pointer that leads back to its parent node.Here is how the �rst footnote in this manual looks after being formatted for Info in theseparate node style:File: texinfo.info Node: Overview-Footnotes, Up: Overview
(1) Note that the first syllable of "Texinfo" ispronounced like "speck", not "hex". ...

A Texinfo �le may be formatted into an Info �le with either footnote style.Use the @footnotestyle command to specify an Info �le's footnote style. Write thiscommand at the beginning of a line followed by an argument, either `end' for the end nodestyle or `separate' for the separate node style.For example,@footnotestyle endor @footnotestyle separateWrite an @footnotestyle command before or shortly after the end-of-header line atthe beginning of a Texinfo �le. (If you include the @footnotestyle command betweenthe start-of-header and end-of-header lines, the region formatting commands will formatfootnotes as speci�ed.)If you do not specify a footnote style, the formatting commands use their default style.Currently, texinfo-format-buffer and texinfo-format-region use the `separate' styleand makeinfo uses the `end' style.This chapter contains two footnotes.

Chapter 17: Conditionally Visible Text 127

17 Conditionally Visible Text

Sometimes it is good to use di�erent text for a printed manual and its correspondingInfo �le. In this case, you can use the conditional commands to specify which text is forthe printed manual and which is for the Info �le.
@ifinfo begins segments of text that should be ignored by TEX when it typesetsthe printed manual. The segment of text appears only in the Info �le. The @ifinfocommand should appear on a line by itself; end the Info-only text with a line containing@end ifinfo by itself. At the beginning of a Texinfo �le, the Info permissions are containedwithin a region marked by @ifinfo and @end ifinfo. (See Section 3.3 [Info Summary andPermissions], page 30.)
The @iftex and @end iftex commands are similar to the @ifinfo and @end ifinfocommands, except that they specify text that will appear in the printed manual but not inthe Info �le. Likewise for @ifhtml and @end ifhtml, which specify text to appear only inHTML output.
For example,
@iftexThis text will appear only in the printed manual.@end iftex@ifinfoHowever, this text will appear only in Info.@end ifinfo

The preceding example produces the following line: This text will appear only in the printedmanual.
Note how you only see one of the two lines, depending on whether you are reading the Infoversion or the printed version of this manual.

The @titlepage command is a special variant of @iftex that is used for making thetitle and copyright pages of the printed manual. (See Section 3.4.1 [@titlepage], page 31.)
17.1 Conditional Not Commands

You can specify text to be included in any output format other than some given onewith the @ifnot... commands:
@ifnothtml ... @end ifnothtml@ifnotinfo ... @end ifnotinfo@ifnottex ... @end ifnottex

(The @ifnot... command and the @end command must actually appear on lines by them-selves.)
If the output �le is not being made for the given format, the region is included. Oth-erwise, it is ignored.
The regions delimited by these commands are ordinary Texinfo source as with @iftex,not raw formatter source as with @tex.

128 Texinfo 3.12

17.2 Raw Formatter Commands
Inside a region delineated by @iftex and @end iftex, you can embed some raw TEXcommands. Info will ignore these commands since they are only in that part of the �le whichis seen by TEX. You can write the TEX commands as you would write them in a normalTEX �le, except that you must replace the `\' used by TEX with an `@'. For example, in the@titlepage section of a Texinfo �le, you can use the TEX command @vskip to format thecopyright page. (The @titlepage command causes Info to ignore the region automatically,as it does with the @iftex command.)However, many features of plain TEX will not work, as they are overridden by Texinfofeatures.You can enter plain TEX completely, and use `\' in the TEX commands, by delineatinga region with the @tex and @end tex commands. (The @tex command also causes Info toignore the region, like the @iftex command.) The sole exception is that @ chracter stillintroduces a command, so that @end tex can be recognized properly.For example, here is a mathematical expression written in plain TEX:@tex$$ \chi^2 = \sum_{i=1}^N\left (y_i - (a + b x_i)\over \sigma_i\right)^2 $$@end texThe output of this example will appear only in a printed manual. If you are reading this inInfo, you will not see the equation that appears in the printed manual. In a printed manual,the above expression looks like this:

�2 = NX
i=1
�yi � (a + bxi)�i

�2

Analogously, you can use @ifhtml ... @end ifhtml to delimit a region to be includedin HTML output only, and @html ... @end ifhtml for a region of raw HTML (again, exceptthat @ is still the escape character, so the @end command can be recognized.)
17.3 @set, @clear, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo�le with the @set, @clear, @ifset, and @ifclear commands.In addition, you can use the @set
ag command to set the value of
ag to a string ofcharacters; and use @value{
ag } to insert that string. You can use @set, for example, toset a date and use @value to insert the date in several places in the Texinfo �le.
17.3.1 @ifset and @ifclear

When a
ag is set, the Texinfo formatting commands format text between subsequentpairs of @ifset
ag and @end ifset commands. When the
ag is cleared, the Texinfoformatting commands do not format the text.

Chapter 17: Conditionally Visible Text 129

Use the @set
ag command to turn on, or set, a
ag ; a
ag can be any single word.The format for the command looks like this:
@set
ag

Write the conditionally formatted text between @ifset
ag and @end ifset com-mands, like this:
@ifset
ag
conditional-text@end ifsetFor example, you can create one document that has two variants, such as a manual fora `large' and `small' model:
You can use this machine to dig up shrubswithout hurting them.
@set large
@ifset largeIt can also dig up fully grown trees.@end ifset
Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and@end ifset because the large
ag is set.
Use the @clear
ag command to turn o�, or clear, a
ag. Clearing a
ag is the oppositeof setting a
ag. The command looks like this:
@clear
ag

Write the command on a line of its own.
When
ag is cleared, the Texinfo formatting commands do not format the text between@ifset
ag and @end ifset; that text is ignored and does not appear in either printed orInfo output.
For example, if you clear the
ag of the preceding example by writing an @clearlarge command after the @set large command (but before the conditional text), then theTexinfo formatting commands ignore the text between the @ifset large and @end ifsetcommands. In the formatted output, that text does not appear; in both printed and Infooutput, you see only the lines that say, \You can use this machine to dig up shrubs withouthurting them. Remember to replant promptly . . . ".
If a
ag is cleared with an @clear
ag command, then the formatting commandsformat text between subsequent pairs of @ifclear and @end ifclear commands. But ifthe
ag is set with @set
ag , then the formatting commands do not format text betweenan @ifclear and an @end ifclear command; rather, they ignore that text. An @ifclearcommand looks like this:
@ifclear
agIn brief, the commands are:

@set
ag Tell the Texinfo formatting commands that
ag is set.

130 Texinfo 3.12

@clear
ag Tell the Texinfo formatting commands that
ag is cleared.
@ifset
ag If
ag is set, tell the Texinfo formatting commands to format the text up tothe following @end ifset command.If
ag is cleared, tell the Texinfo formatting commands to ignore text up to thefollowing @end ifset command.
@ifclear
agIf
ag is set, tell the Texinfo formatting commands to ignore the text up to thefollowing @end ifclear command.If
ag is cleared, tell the Texinfo formatting commands to format the text upto the following @end ifclear command.
17.3.2 @value

You can use the @set command to specify a value for a
ag, which is expanded by the@value command. The value is a string a characters.Write the @set command like this:@set foo This is a string.This sets the value of foo to \This is a string."The Texinfo formatters replace an @value{
ag } command with the string to which

ag is set.Thus, when foo is set as shown above, the Texinfo formatters convert@value{foo}to This is a string.You can write an @value command within a paragraph; but you must write an @setcommand on a line of its own.If you write the @set command like this:@set foowithout specifying a string, the value of foo is an empty string.If you clear a previously set
ag with an @clear
ag command, a subsequent@value{flag} command is invalid and the string is replaced with an error message thatsays `{No value for "
ag "}'.For example, if you set foo as follows:@set how-much very, very, verythen the formatters transformIt is a @value{how-much} wet day.into It is a very, very, very wet day.If you write@clear how-muchthen the formatters transform

Chapter 17: Conditionally Visible Text 131

It is a @value{how-much} wet day.into It is a {No value for "how-much"} wet day.
17.3.3 @valueExample

You can use the @value command to limit the number of places you need to changewhen you record an update to a manual. Here is how it is done in The GNU Make Manual:Set the
ags:@set EDITION 0.35 Beta@set VERSION 3.63 Beta@set UPDATED 14 August 1992@set UPDATE-MONTH August 1992Write text for the �rst @ifinfo section, for people reading the Texinfo �le:This is Edition @value{EDITION},last updated @value{UPDATED},of @cite{The GNU Make Manual},for @code{make}, Version @value{VERSION}.Write text for the title page, for people reading the printed manual:@title GNU Make@subtitle A Program for Directing Recompilation@subtitle Edition @value{EDITION}, ...@subtitle @value{UPDATE-MONTH}(On a printed cover, a date listing the month and the year looks less fussy than a datelisting the day as well as the month and year.)Write text for the Top node, for people reading the Info �le:This is Edition @value{EDITION}of the @cite{GNU Make Manual},last updated @value{UPDATED}for @code{make} Version @value{VERSION}.After you format the manual, the text in the �rst @ifinfo section looks like this:This is Edition 0.35 Beta, last updated 14 August 1992,of `The GNU Make Manual', for `make', Version 3.63 Beta.When you update the manual, change only the values of the
ags; you do not need torewrite the three sections.

132 Texinfo 3.12

Chapter 18: Macros: De�ning New Texinfo Commands 133

18 Macros: De�ning New Texinfo Commands

A Texinfo macro allows you to de�ne a new Texinfo command as any sequence of textand/or existing commands (including other macros). The macro can have any number of
parameters|text you supply each time you use the macro. (This has nothing to do withthe @defmac command, which is for documenting macros in the subject of the manual; seeSection 15.1 [Def Cmd Template], page 113.)
18.1 De�ning Macros

You use the Texinfo @macro command to de�ne a macro. For example:
@macro macro-name{param1, param2, ...}
text ... \param1\ ...@end macro

The parameters param1, param2, . . . correspond to arguments supplied when themacro is subsequently used in the document (see the next section).
If a macro needs no parameters, you can de�ne it either with an empty list (`@macrofoo {}') or with no braces at all (`@macro foo').
The de�nition or body of the macro can contain any Texinfo commands, includingpreviously-de�ned macros. (It is not possible to have mutually recursive Texinfo macros.)In the body, instances of a parameter name surrounded by backslashes, as in `\param1\' inthe example above, are replaced by the corresponding argument from the macro invocation.
You can unde�ne a macro foo with @unmacro foo. It is not an error to unde�ne amacro that is already unde�ned. For example:
@unmacro foo

18.2 Invoking Macros
After a macro is de�ned (see the previous section), you can use (invoke) it in yourdocument like this:
@macro-name {arg1, arg2, ...}

and the result will be just as if you typed the body of macro-name at that spot. Forexample:
@macro foo {p, q}Together: \p\ & \q\.@end macro@foo{a, b}

produces:Together: a & b.
Thus, the arguments and parameters are separated by commas and delimited by braces;any whitespace after (but not before) a comma is ignored. To insert a comma, brace, orbackslash in an argument, prepend a backslash, as in

134 Texinfo 3.12

@macro-name {\\\{\}\,}which will pass the (almost certainly error-producing) argument `\{},' to macro-name.If the macro is de�ned to take a single argument, and is invoked without any braces,the entire rest of the line after the macro name is supplied as the argument. For example:@macro bar {p}Twice: \p\, \p\.@end macro@bar aahproduces:Twice: aah, aah.

Chapter 19: Format and Print Hardcopy 135

19 Format and Print Hardcopy

There are three major shell commands for making a printed manual from a Texinfo �le:one for converting the Texinfo �le into a �le that will be printed, a second for sorting indices,and a third for printing the formatted document. When you use the shell commands, youcan either work directly in the operating system shell or work within a shell inside GNUEmacs.If you are using GNU Emacs, you can use commands provided by Texinfo mode insteadof shell commands. In addition to the three commands to format a �le, sort the indices,and print the result, Texinfo mode o�ers key bindings for commands to recenter the outputbu�er, show the print queue, and delete a job from the print queue.The typesetting program called TEX is used for formatting a Texinfo �le. TEX is avery powerful typesetting program and, if used right, does an exceptionally good job. (SeeAppendix J [How to Obtain TEX], page 203, for information on how to obtain TEX.)The makeinfo, texinfo-format-region, and texinfo-format-buffer commandsread the very same @-commands in the Texinfo �le as does TEX, but process themdi�erently to make an Info �le; see Chapter 20 [Create an Info File], page 143.
19.1 Format using tex and texindex

Format the Texinfo �le with the shell command tex followed by the name of the Texinfo�le. For example:tex foo.texiTEX will produce a DVI �le as well as several auxiliary �les containing information forindices, cross references, etc. The DVI �le (for DeVice Independent�le) can be printed onvirtually any printe (see the following sections).The tex formatting command itself does not sort the indices; it writes an output�le of unsorted index data. (The texi2dvi command automatically generates indices; seeSection 19.2 [Format using texi2dvi], page 136.) To generate a printed index after runningthe tex command, you �rst need a sorted index to work from. The texindex command sortsindices. (The source �le `texindex.c' comes as part of the standard Texinfo distribution,among other places.)The tex formatting command outputs unsorted index �les under names that obey astandard convention: the name of your main input �le with any `.tex' (or similar, seesection \tex invocation" in Web2c) extension removed, followed by the two letter namesof indices. For example, the raw index output �les for the input �le `foo.texinfo' wouldbe `foo.cp', `foo.vr', `foo.fn', `foo.tp', `foo.pg' and `foo.ky'. Those are exactly thearguments to give to texindex.Instead of specifying all the unsorted index �le names explicitly, you can use `??' asshell wildcards and give the command in this form:texindex foo.??This command will run texindex on all the unsorted index �les, including any that youhave de�ned yourself using @defindex or @defcodeindex. (You may execute `texindexfoo.??' even if there are similarly named �les with two letter extensions that are not index�les, such as `foo.el'. The texindex command reports but otherwise ignores such �les.)

136 Texinfo 3.12

For each �le speci�ed, texindex generates a sorted index �le whose name is made byappending `s' to the input �le name. The @printindex command knows to look for a �le ofthat name (see Section 4.1 [Printing Indices & Menus], page 39). texindex does not alterthe raw index output �le.After you have sorted the indices, you need to rerun the tex formatting command onthe Texinfo �le. This regenerates the DVI �le, this time with up-to-date index entries.Finally, you may need to run tex one more time, to get the page numbers in thecross-references correct.To summarize, this is a four step process:1. Run tex on your Texinfo �le. This generates a DVI �le (with unde�ned cross-referencesand no indices), and the raw index �les (with two letter extensions).2. Run texindex on the raw index �les. This creates the corresponding sorted index �les(with three letter extensions).3. Run tex again on your Texinfo �le. This regenerates the DVI �le, this time with indicesand de�ned cross-references, but with page numbers for the cross-references from lasttime, generally incorrect.4. Run tex one last time. This time the correct page numbers are written for the cross-references.
Alternatively, it's a one-step process: run texi2dvi.You need not run texindex each time after you run tex. If you do not, on the nextrun, the tex formatting command will use whatever sorted index �les happen to exist fromthe previous use of texindex. This is usually ok while you are debugging.

19.2 Format using texi2dvi

The texi2dvi command automatically runs both tex and texindex as many timesas necessary to produce a DVI �le with up-to-date, sorted indices. It simpli�es the tex|texindex|tex sequence described in the previous section.The syntax for texi2dvi is like this (where `prompt$' is your shell prompt):prompt$ texi2dvi �lename ...For a list of options, run `texi2dvi --help'.
19.3 Shell Print Using lpr -d

The precise command to print a DVI �le depends on your system installation, but `lpr-d' is common. The command may require the DVI �le name without any extension orwith a `.dvi' extension. (If it is `lpr', you must include the `.dvi'.)The following commands, for example, will (probably) su�ce to sort the indices, format,and print the Bison Manual:tex bison.texinfotexindex bison.??tex bison.texinfolpr -d bison.dvi

Chapter 19: Format and Print Hardcopy 137

(Remember that the shell commands may be di�erent at your site; but these are commonlyused versions.)Using the texi2dvi shell script, you simply need type:texi2dvi bison.texinfolpr -d bison.dvi
19.4 From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. Tocreate a shell within Emacs, type M-x shell . In this shell, you can format and print thedocument. See Chapter 19 [Format and Print Hardcopy], page 135, for details.You can switch to and from the shell bu�er while tex is running and do other editing.If you are formatting a long document on a slow machine, this can be very convenient.You can also use texi2dvi from an Emacs shell. For example, here is how to usetexi2dvi to format and print Using and Porting GNU CC from a shell within Emacs:texi2dvi gcc.texinfolpr -d gcc.dvi
19.5 Formatting and Printing in Texinfo Mode

Texinfo mode provides several prede�ned key commands for TEX formatting and print-ing. These include commands for sorting indices, looking at the printer queue, killing theformatting job, and recentering the display of the bu�er in which the operations occur.
C-c C-t C-b
M-x texinfo-tex-bufferRun texi2dvi on the current bu�er.
C-c C-t C-r
M-x texinfo-tex-regionRun TEX on the current region.
C-c C-t C-i
M-x texinfo-texindexSort the indices of a Texinfo �le formatted with texinfo-tex-region.
C-c C-t C-p
M-x texinfo-tex-printPrint a DVI �le that was made with texinfo-tex-region or texinfo-tex-buffer.
C-c C-t C-q
M-x tex-show-print-queueShow the print queue.
C-c C-t C-d
M-x texinfo-delete-from-print-queueDelete a job from the print queue; you will be prompted for the job num-ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-queue).

138 Texinfo 3.12

C-c C-t C-k
M-x tex-kill-jobKill the currently running TEX job started by texinfo-tex-region ortexinfo-tex-buffer, or any other process running in the Texinfo shell bu�er.
C-c C-t C-x
M-x texinfo-quit-jobQuit a TEX formatting job that has stopped because of an error by sending an

hxi to it. When you do this, TEX preserves a record of what it did in a `.log'�le.
C-c C-t C-l
M-x tex-recenter-output-bufferRedisplay the shell bu�er in which the TEX printing and formatting commandsare run to show its most recent output.

Thus, the usual sequence of commands for formatting a bu�er is as follows (withcomments to the right):C-c C-t C-b Run texi2dvi on the bu�er.C-c C-t C-p Print the DVI �le.C-c C-t C-q Display the printer queue.The Texinfo mode TEX formatting commands start a subshell in Emacs called the`*tex-shell*'. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-print-command commands are all run in this shell.You can watch the commands operate in the `*tex-shell*' bu�er, and you can switchto and from and use the `*tex-shell*' bu�er as you would any other shell bu�er.The formatting and print commands depend on the values of several variables. Thedefault values are:Variable Default value
texinfo-texi2dvi-command "texi2dvi"texinfo-tex-command "tex"texinfo-texindex-command "texindex"texinfo-delete-from-print-queue-command "lprm"texinfo-tex-trailer "@bye"tex-start-of-header "%**start"tex-end-of-header "%**end"tex-dvi-print-command "lpr -d"tex-show-queue-command "lpq"You can change the values of these variables with the M-x edit-options command (seesection \Editing Variable Values" in XEmacs User's Manual), with the M-x set-variablecommand (see section \Examining and Setting Variables" in XEmacs User's Manual), orwith your `.emacs' initialization �le (see section \Init File" in XEmacs User's Manual).

19.6 Using the Local Variables List
Yet another way to apply the TEX formatting command to a Texinfo �le is to put thatcommand in a local variables list at the end of the Texinfo �le. You can then specify the

Chapter 19: Format and Print Hardcopy 139

tex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x
compile . This creates a special shell called the `*compilation*' bu�er in which Emacsruns the compile command. For example, at the end of the `gdb.texinfo' �le, after the@bye, you could put the following:Local Variables:compile-command: "texi2dvi gdb.texinfo"End:This technique is most often used by programmers who also compile programs this way; seesection \Compilation" in XEmacs User's Manual.
19.7 TEX Formatting Requirements Summary

Every Texinfo �le that is to be input to TEX must begin with a \input command andmust contain an @setfilename command:\input texinfo@setfilename arg-not-used-by-@TeX{}The �rst command instructs TEX to load the macros it needs to process a Texinfo �le andthe second command opens auxiliary �les.Every Texinfo �le must end with a line that terminates TEX's processing and forcesout un�nished pages:@byeStrictly speaking, these lines are all a Texinfo �le needs to be processed successfully byTEX.Usually, however, the beginning includes an @settitle command to de�ne the titleof the printed manual, an @setchapternewpage command, a title page, a copyright page,and permissions. Besides an @bye, the end of a �le usually includes indices and a table ofcontents. (And of course most manuals contain a body of text as well.)For more information, see Section 3.2.4 [@settitle], page 28, Section 3.2.5[@setchapternewpage], page 29, Appendix F [Page Headings], page 187, Section 3.4[Titlepage & Copyright Page], page 31, Section 4.1 [Printing Indices & Menus], page 39,and Section 4.2 [Contents], page 40.
19.8 Preparing to Use TEX

TEX needs to know where to �nd the `texinfo.tex' �le that you have told it to inputwith the `\input texinfo' command at the beginning of the �rst line. The `texinfo.tex'�le tells TEX how to handle @-commands; it is included in all standard GNU distributions.Usually, the `texinfo.tex' �le is put under the default directory that contains TEXmacros (`/usr/local/share/texmf/tex/texinfo/texinfo.tex' by default) when GNUEmacs or other GNU software is installed. In this case, TEX will �nd the �le and you donot need to do anything special. Alternatively, you can put `texinfo.tex' in the currentdirectory when you run TEX, and TEX will �nd it there.Also, you should install `epsf.tex' in the same place as `texinfo.tex', if it is notalready installed from another distribution. This �le is needed to support the @imagecommand (see Section 13.10 [Images], page 107).

140 Texinfo 3.12

Optionally, you may create an additional `texinfo.cnf', and install it as well. This �leis read by TEX at the @setfilename command (see Section 3.2.3 [@setfilename], page 27).You can put any commands you like there according to local site-wide conventions, and theywill be read by TEX when processing any Texinfo document. For example, if `texinfo.cnf'contains the a single line `@afourpaper' (see Section 19.11 [A4 Paper], page 141), then allTexinfo documents will be processed with that page size in e�ect. If you have nothing toput in `texinfo.cnf', you do not need to create it.
If neither of the above locations for these system �les su�ce for you, you can specify thedirectories explicitly. For `texinfo.tex', you can do this by writing the complete path forthe �le after the \input command. Another way, that works for both `texinfo.tex' and`texinfo.cnf' (and any other �le TEX might read), is to set the TEXINPUTS environmentvariable in your `.cshrc' or `.profile' �le.
Which you use of `.cshrc' or `.profile' depends on whether you use a Bourneshell-compatible (sh, bash, ksh, . . .) or C shell-compatible (csh, tcsh) command inter-preter. The latter read the `.cshrc' �le for initialization information, and the former read`.profile'.
In a `.cshrc' �le, you could use the following csh command sequence:
setenv TEXINPUTS .:/home/me/mylib:/usr/lib/tex/macrosIn a `.profile' �le, you could use the following sh command sequence:
TEXINPUTS=.:/home/me/mylib:/usr/lib/tex/macrosexport TEXINPUTSThis would cause TEX to look for `\input' �le �rst in the current directory, indicated bythe `.', then in a hypothetical user's `me/mylib' directory, and �nally in a system directory.

19.9 Overfull \hboxes"
TEX is sometimes unable to typeset a line without extending it into the right margin.This can occur when TEX comes upon what it interprets as a long word that it cannothyphenate, such as an electronic mail network address or a very long title. When thishappens, TEX prints an error message like this:
Overfull \hbox (20.76302pt too wide)

(In TEX, lines are in \horizontal boxes", hence the term, \hbox". The backslash, `\', is theTEX equivalent of `@'.)
TEX also provides the line number in the Texinfo source �le and the text of the o�endingline, which is marked at all the places that TEX knows how to hyphenate words. SeeSection G.2 [Catching Errors with TEX Formatting], page 192, for more information abouttypesetting errors.
If the Texinfo �le has an overfull hbox, you can rewrite the sentence so the overfullhbox does not occur, or you can decide to leave it. A small excursion into the right marginoften does not matter and may not even be noticeable.
However, unless told otherwise, TEX will print a large, ugly, black rectangle beside theline that contains the overfull hbox. This is so you will notice the location of the problemif you are correcting a draft.

Chapter 19: Format and Print Hardcopy 141

To prevent such a monstrosity from marring your �nal printout, write the following inthe beginning of the Texinfo �le on a line of its own, before the @titlepage command:@finalout
19.10 Printing \Small" Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, youcan direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for boundbooks by inserting the following command on a line by itself at the beginning of the Texinfo�le, before the title page:@smallbook(Since regular sized books are often about 7 by 9.25 inches, this command might betterhave been called the @regularbooksize command, but it came to be called the @smallbookcommand by comparison to the 8.5 by 11 inch format.)If you write the @smallbook command between the start-of-header and end-of-headerlines, the Texinfo mode TEX region formatting command, texinfo-tex-region, will formatthe region in \small" book size (see Section 3.2.2 [Start of Header], page 27).The Free Software Foundation distributes printed copies of The GNU Emacs Man-
ual and other manuals in the \small" book size. See Section 10.6 [@smallexample and@smalllisp], page 82, for information about commands that make it easier to produceexamples for a smaller manual.Alternatively, to avoid embedding this physical paper size in your document, usetexi2dvi to format your document (see Section 19.2 [Format with texi2dvi], page 136),and supply `-t @smallbook' as an argument. Then other people do not have to change thedocument source �le to format it di�erently.
19.11 Printing on A4 Paper

You can tell TEX to typeset a document for printing on European size A4 paper withthe @afourpaper command. Write the command on a line by itself between @iftex and@end iftex lines near the beginning of the Texinfo �le, before the title page:For example, this is how you would write the header for this manual:\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename texinfo@settitle Texinfo@syncodeindex vr fn@iftex@afourpaper@end iftex@c %**end of headerAlternatively, to avoid embedding this physical paper size in your document, usetexi2dvi to format your document (see Section 19.2 [Format with texi2dvi], page 136),and supply `-t @afourpaper' as an argument. Then other people do not have to changethe document source �le to format it di�erently.

142 Texinfo 3.12

Another alternative: put the @afourpaper command in the �le `texinfo.cnf' thatTEX will read. (No need for @iftex there.) This will automatically typeset all the Texinfodocuments at your site with that paper size in e�ect.
19.12 Cropmarks and Magni�cation

You can attempt to direct TEX to print cropmarks at the corners of pages with the@cropmarks command. Write the @cropmarks command on a line by itself between @iftexand @end iftex lines near the beginning of the Texinfo �le, before the title page, like this:@iftex@cropmarks@end iftexThis command is mainly for printers that typeset several pages on one sheet of �lm;but you can attempt to use it to mark the corners of a book set to 7 by 9.25 inches with the@smallbook command. (Printers will not produce cropmarks for regular sized output thatis printed on regular sized paper.) Since di�erent printing machines work in di�erent ways,you should explore the use of this command with a spirit of adventure. You may have torede�ne the command in the `texinfo.tex' de�nitions �le.You can attempt to direct TEX to typeset pages larger or smaller than usual with the\mag TEX command. Everything that is typeset is scaled proportionally larger or smaller.(\mag stands for \magni�cation".) This is not a Texinfo @-command, but is a plain TEXcommand that is pre�xed with a backslash. You have to write this command between @texand @end tex (see Section 17.2 [Raw Formatter Commands], page 128).Follow the \mag command with an `=' and then a number that is 1000 times themagni�cation you desire. For example, to print pages at 1.2 normal size, write the followingnear the beginning of the Texinfo �le, before the title page:@tex\mag=1200@end texWith some printing technologies, you can print normal-sized copies that look betterthan usual by using a larger-than-normal master.Depending on your system, \mag may not work or may work only at certain magni�-cations. Be prepared to experiment.

Chapter 20: Creating an Info File 143

20 Creating an Info File

makeinfo is a utility that converts a Texinfo �le into an Info �le; texinfo-format-region and texinfo-format-buffer are GNU Emacs functions that do the same.A Texinfo �le must contain an @setfilename line near its beginning, otherwise theInfo formatting commands will fail.For information on installing the Info �le in the Info system, see Chapter 21 [Install anInfo File], page 151.The makeinfo utility creates an Info �le from a Texinfo source �le more quickly thaneither of the Emacs formatting commands and provides better error messages. We recom-mend it. makeinfo is a C program that is independent of Emacs. You do not need to runEmacs to use makeinfo, which means you can use makeinfo on machines that are too smallto run Emacs. You can run makeinfo in any one of three ways: from an operating systemshell, from a shell inside Emacs, or by typing a key command in Texinfo mode in Emacs.The texinfo-format-region and the texinfo-format-buffer commands are usefulif you cannot run makeinfo. Also, in some circumstances, they format short regions orbu�ers more quickly than makeinfo.
20.1 Running makeinfo from a Shell

To create an Info �le from a Texinfo �le, type makeinfo followed by the name of theTexinfo �le. Thus, to create the Info �le for Bison, type the following to the shell: is theprompt):
makeinfo bison.texinfo(You can run a shell inside Emacs by typing M-x shell .)

20.2 Options for makeinfo

The makeinfo command takes a number of options. Most often, options are used toset the value of the �ll column and specify the footnote style. Each command line option isa word preceded by `--' or a letter preceded by `-'. You can use abbreviations for the longoption names as long as they are unique.For example, you could use the following shell command to create an Info �le for`bison.texinfo' in which each line is �lled to only 68 columns:
makeinfo --fill-column=68 bison.texinfoYou can write two or more options in sequence, like this:
makeinfo --no-split --fill-column=70 ...This would keep the Info �le together as one possibly very long �le and would also set the�ll column to 70.The options are:

-D var Cause the variable var to be de�ned. This is equivalent to @set var in theTexinfo �le (see Section 17.3 [set clear value], page 128).

144 Texinfo 3.12

--error-limit=limitSet the maximum number of errors that makeinfo will report before exiting(on the assumption that continuing would be useless); default 100.
--fill-column=widthSpecify the maximum number of columns in a line; this is the right-hand edgeof a line. Paragraphs that are �lled will be �lled to this width. (Filling is theprocess of breaking up and connecting lines so that lines are the same lengthas or shorter than the number speci�ed as the �ll column. Lines are brokenbetween words.) The default value is 72.
--footnote-style=styleSet the footnote style to style, either `end' for the end node style (the default)or `separate' for the separate node style. The value set by this option overridesthe value set in a Texinfo �le by an @footnotestyle command (see Chapter 16[Footnotes], page 125). When the footnote style is `separate', makeinfo makesa new node containing the footnotes found in the current node. When thefootnote style is `end', makeinfo places the footnote references at the end ofthe current node.
--force Ordinarily, if the input �le has errors, the output �les are not created. Withthis option, they are preserved.
--help Print a usage message listing all available options, then exit successfully.
-I dir Add dir to the directory search list for �nding �les that are included using the@include command. By default, makeinfo searches only the current directory.
--no-headersDo not include menus or node lines in the output. This results in an ascii �lethat you cannot read in Info since it does not contain the requisite nodes ormenus. It is primarily useful to extract certain pieces of a manual into separate�les to be included in a distribution, such as `INSTALL' �les.
--no-splitSuppress the splitting stage of makeinfo. By default, large output �les (wherethe size is greater than 70k bytes) are split into smaller sub�les, each oneapproximately 50k bytes.
--no-pointer-validate--no-validateSuppress the pointer-validation phase of makeinfo. Normally, after a Texinfo�le is processed, some consistency checks are made to ensure that cross refer-ences can be resolved, etc. See Section 20.3 [Pointer Validation], page 145.
--no-warn Suppress warning messages (but not error messages). You might want this ifthe �le you are creating has examples of Texinfo cross references within it, andthe nodes that are referenced do not actually exist.

Chapter 20: Creating an Info File 145

--no-number-footnotesSuppress automatic footnote numbering. By default, makeinfo numbers eachfootnote sequentially in a single node, resetting the current footnote number to1 at the start of each node.
--output=�le-o �le Specify that the output should be directed to �le and not to the �le namespeci�ed in the @setfilename command found in the Texinfo source (see Sec-tion 3.2.3 [set�lename], page 27). If �le is `-', output goes to standard outputand `--no-split' is implied.
-P dir Prepend dir to the directory search list for @include. See `-I' for more details.
--paragraph-indent=indentSet the paragraph indentation style to indent. The value set by this optionoverrides the value set in a Texinfo �le by an @paragraphindent command (seeSection 3.2.6 [paragraphindent], page 30). The value of indent is interpreted asfollows:

`asis' Preserve any existing indentation at the starts of paragraphs.
`0' or `none'Delete any existing indentation.
num Indent each paragraph by that number of spaces.

--reference-limit=limitSet the value of the number of references to a node that makeinfo will makewithout reporting a warning. If a node has more than this number of referencesin it, makeinfo will make the references but also report a warning. The defaultis 1000.
-U var Cause var to be unde�ned. This is equivalent to @clear var in the Texinfo �le(see Section 17.3 [set clear value], page 128).
--verbose Cause makeinfo to display messages saying what it is doing. Normally,makeinfo only outputs messages if there are errors or warnings.
--version Print the version number, then exit successfully.
20.3 Pointer Validation

If you do not suppress pointer-validation, makeinfo will check the validity of the �nalInfo �le. Mostly, this means ensuring that nodes you have referenced really exist. Here isa complete list of what is checked:1. If a `Next', `Previous', or `Up' node reference is a reference to a node in the current�le and is not an external reference such as to `(dir)', then the referenced node mustexist.2. In every node, if the `Previous' node is di�erent from the `Up' node, then the `Previous'node must also be pointed to by a `Next' node.

146 Texinfo 3.12

3. Every node except the `Top' node must have an `Up' pointer.4. The node referenced by an `Up' pointer must contain a reference to the current nodein some manner other than through a `Next' reference. This includes menu entries andcross references.5. If the `Next' reference of a node is not the same as the `Next' reference of the `Up'reference, then the node referenced by the `Next' pointer must have a `Previous' pointerthat points back to the current node. This rule allows the last node in a section topoint to the �rst node of the next chapter.
20.4 Running makeinfo inside Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-region or the makeinfo-buffer commands. In Texinfo mode, the commands are boundto C-c C-m C-r and C-c C-m C-bby default.
C-c C-m C-r
M-x makeinfo-regionFormat the current region for Info.
C-c C-m C-b
M-x makeinfo-bufferFormat the current bu�er for Info.

When you invoke either makeinfo-region or makeinfo-buffer, Emacs prompts for a�le name, o�ering the name of the visited �le as the default. You can edit the default �lename in the minibu�er if you wish, before pressing hRETi to start the makeinfo process.The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfoprogram in a temporary shell bu�er. If makeinfo �nds any errors, Emacs displays the errormessages in the temporary bu�er.You can parse the error messages by typing C-x ` (next-error). This causes Emacsto go to and position the cursor on the line in the Texinfo source that makeinfo thinkscaused the error. See section \Running make or Compilers Generally" in XEmacs User's
Manual, for more information about using the next-error command.In addition, you can kill the shell in which the makeinfo command is running or makethe shell bu�er display its most recent output.
C-c C-m C-k
M-x makeinfo-kill-jobKill the current running makeinfo job created by makeinfo-region ormakeinfo-buffer.
C-c C-m C-l
M-x makeinfo-recenter-output-bufferRedisplay the makeinfo shell bu�er to display its most recent output.
(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-kand C-c C-t C-l . See Section 19.5 [Texinfo Mode Printing], page 137.)You can specify options for makeinfo by setting the makeinfo-options variable witheither the M-x edit-options or the M-x set-variable command, or by setting the variablein your `.emacs' initialization �le.

Chapter 20: Creating an Info File 147

For example, you could write the following in your `.emacs' �le:
(setq makeinfo-options"--paragraph-indent=0 --no-split--fill-column=70 --verbose")For more information, see Section 20.2 [Options for makeinfo], page 143, as well as\Editing Variable Values,"\Examining and Setting Variables," and \Init File" in the The

GNU Emacs Manual.
20.5 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo �le withthe texinfo-format-region command. This formats the current region and displays theformatted text in a temporary bu�er called `*Info Region*'.Similarly, you can format a bu�er with the texinfo-format-buffer command. Thiscommand creates a new bu�er and generates the Info �le in it. Typing C-x C-s will savethe Info �le under the name speci�ed by the @setfilename line which must be near thebeginning of the Texinfo �le.
C-c C-e C-rtexinfo-format-regionFormat the current region for Info.
C-c C-e C-btexinfo-format-bufferFormat the current bu�er for Info.

The texinfo-format-region and texinfo-format-buffer commands provide youwith some error checking, and other functions can provide you with further help in �ndingformatting errors. These procedures are described in an appendix; see Appendix G [Catch-ing Mistakes], page 191. However, the makeinfo program is often faster and provides bettererror checking (see Section 20.4 [makeinfo in Emacs], page 146).
20.6 Batch Formatting

You can format Texinfo �les for Info using batch-texinfo-format and Emacs Batchmode. You can run Emacs in Batch mode from any shell, including a shell inside of Emacs.(See section \Command Line Switches and Arguments" in XEmacs User's Manual.)Here is a shell command to format all the �les that end in `.texinfo' in the currentdirectory:
emacs -batch -funcall batch-texinfo-format *.texinfoEmacs processes all the �les listed on the command line, even if an error occurs whileattempting to format some of them.Run batch-texinfo-format only with Emacs in Batch mode as shown; it is not in-teractive. It kills the Batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack makeinfo and want to format severalTexinfo �les at once. When you use Batch mode, you create a new Emacs process. This

148 Texinfo 3.12

frees your current Emacs, so you can continue working in it. (When you run texinfo-format-region or texinfo-format-buffer, you cannot use that Emacs for anything elseuntil the command �nishes.)
20.7 Tag Files and Split Files

If a Texinfo �le has more than 30,000 bytes, texinfo-format-buffer automaticallycreates a tag table for its Info �le; makeinfo always creates a tag table. With a tag table,Info can jump to new nodes more quickly than it can otherwise.In addition, if the Texinfo �le contains more than about 70,000 bytes, texinfo-format-buffer and makeinfo split the large Info �le into shorter indirect sub�les of about 50,000bytes each. Big �les are split into smaller �les so that Emacs does not need to make a largebu�er to hold the whole of a large Info �le; instead, Emacs allocates just enough memoryfor the small, split o� �le that is needed at the time. This way, Emacs avoids wastingmemory when you run Info. (Before splitting was implemented, Info �les were always keptshort and include �les were designed as a way to create a single, large printed manual outof the smaller Info �les. See Appendix E [Include Files], page 183, for more information.Include �les are still used for very large documents, such as The XEmacs Lisp Reference
Manual, in which each chapter is a separate �le.)When a �le is split, Info itself makes use of a shortened version of the original �le thatcontains just the tag table and references to the �les that were split o�. The split o� �lesare called indirect �les.The split o� �les have names that are created by appending `-1', `-2', `-3' and so onto the �le name speci�ed by the @setfilename command. The shortened version of theoriginal �le continues to have the name speci�ed by @setfilename.At one stage in writing this document, for example, the Info �le was saved as`test-texinfo' and that �le looked like this:Info file: test-texinfo, -*-Text-*-produced by texinfo-format-bufferfrom file: new-texinfo-manual.texinfo

^_Indirect:test-texinfo-1: 102test-texinfo-2: 50422test-texinfo-3: 101300^_^LTag table:(Indirect)Node: overview^?104Node: info file^?1271Node: printed manual^?4853Node: conventions^?6855...(But `test-texinfo' had far more nodes than are shown here.) Each of the split o�,indirect �les, `test-texinfo-1', `test-texinfo-2', and `test-texinfo-3', is listed in this

Chapter 20: Creating an Info File 149

�le after the line that says `Indirect:'. The tag table is listed after the line that says `Tagtable:'.In the list of indirect �les, the number following the �le name records the cumulativenumber of bytes in the preceding indirect �les, not counting the �le list itself, the tag table,or the permissions text in each �le. In the tag table, the number following the node namerecords the location of the beginning of the node, in bytes from the beginning.If you are using texinfo-format-buffer to create Info �les, you may want to runthe Info-validate command. (The makeinfo command does such a good job on its own,you do not need Info-validate.) However, you cannot run the M-x Info-validate node-checking command on indirect �les. For information on how to prevent �les from beingsplit and how to validate the structure of the nodes, see Section G.5.1 [Using Info-validate],page 196.

150 Texinfo 3.12

Chapter 21: Installing an Info File 151

21 Installing an Info File

Info �les are usually kept in the `info' directory. You can read Info �les using thestandalone Info program or the Info reader built into Emacs. (See Info �le `info', node`Top', for an introduction to Info.)For Info to work, the `info' directory must contain a �le that serves as a top leveldirectory for the Info system. By convention, this �le is called `dir'. (You can �nd thelocation of this �le within Emacs by typing C-h i to enter Info and then typing C-x C-f tosee the pathname to the `info' directory.)The `dir' �le is itself an Info �le. It contains the top level menu for all the Info �les inthe system. The menu looks like this:* Menu:
* Info: (info). Documentation browsing system.* Emacs: (emacs). The extensible, self-documentingtext editor.* Texinfo: (texinfo). With one source file, makeeither a printed manual usingTeX or an Info file....Each of these menu entries points to the `Top' node of the Info �le that is named inparentheses. (The menu entry does not need to specify the `Top' node, since Info goes tothe `Top' node if no node name is mentioned. See Section 7.5 [Nodes in Other Info Files],page 57.)Thus, the `Info' entry points to the `Top' node of the `info' �le and the `Emacs' entrypoints to the `Top' node of the `emacs' �le.In each of the Info �les, the `Up' pointer of the `Top' node refers back to the dir �le.For example, the line for the `Top' node of the Emacs manual looks like this in Info:File: emacs Node: Top, Up: (DIR), Next: Distrib(Note that in this case, the `dir' �le name is written in upper case letters|it can be writtenin either upper or lower case. Info has a feature that it will change the case of the �le nameto lower case if it cannot �nd the name as written.)

21.1 Listing a New Info File
To add a new Info �le to your system, you must write a menu entry to add to the menuin the `dir' �le in the `info' directory. For example, if you were adding documentation forGDB, you would write the following new entry:* GDB: (gdb). The source-level C debugger.The �rst part of the menu entry is the menu entry name, followed by a colon. The secondpart is the name of the Info �le, in parentheses, followed by a period. The third part is thedescription.The name of an Info �le often has a `.info' extension. Thus, the Info �le for GDBmight be called either `gdb' or `gdb.info'. The Info reader programs automatically try the�le name both with and without `.info'; so it is better to avoid clutter and not to write

152 Texinfo 3.12

`.info' explicitly in the menu entry. For example, the GDB menu entry should use just`gdb' for the �le name, not `gdb.info'.
21.2 Info Files in Other Directories

If an Info �le is not in the `info' directory, there are three ways to specify its location:� Write the pathname in the `dir' �le as the second part of the menu.� If you are using Emacs, list the name of the �le in a second `dir' �le, in its directory;and then add the name of that directory to the Info-directory-list variable in yourpersonal or site initialization �le.This tells Emacs where to look for `dir' �les. Emacs merges the �les named `dir' fromeach of the listed directories. (In Emacs version 18, you can set the Info-directoryvariable to the name of only one directory.)� Specify the Info directory name in the INFOPATH environment variable in your`.profile' or `.cshrc' initialization �le. (Only you and others who set thisenvironment variable will be able to �nd Info �les whose location is speci�ed this way.)
For example, to reach a test �le in the `/home/bob/manuals' directory, you could addan entry like this to the menu in the `dir' �le:* Test: (/home/bob/manuals/info-test). Bob's own test file.In this case, the absolute �le name of the `info-test' �le is written as the second part ofthe menu entry.Alternatively, you could write the following in your `.emacs' �le:(setq Info-directory-list'("/home/bob/manuals""/usr/local/info"))This tells Emacs to merge the `dir' �le from the `/home/bob/manuals' direc-tory with the `dir' �le from the `/usr/local/info' directory. Info will list the`/home/bob/manuals/info-test' �le as a menu entry in the `/home/bob/manuals/dir'�le. Finally, you can tell Info where to look by setting the INFOPATH environment variablein your `.cshrc' or `.profile' �le. If you use a Bourne-compatible shell such as sh orbash for your shell command interpreter, you set the INFOPATH environment variable in the`.profile' initialization �le; but if you use csh or tcsh, you must set the variable in the`.cshrc' initialization �le. The two types of shells use di�erent syntax.� In a `.cshrc' �le, you could set the INFOPATH variable as follows:setenv INFOPATH .:~/manuals:/usr/local/emacs/info� In a `.profile' �le, you would achieve the same e�ect by writing:INFOPATH=.:$HOME/manuals:/usr/local/emacs/infoexport INFOPATH

The `.' indicates the current directory as usual. Emacs uses the INFOPATH environmentvariable to initialize the value of Emacs's own Info-directory-list variable.However you set INFOPATH, if its last character is a colon, this is replaced by the default(compiled-in) path. This gives you a way to augment the default path with new directorieswithout having to list all the standard places. For example (using sh syntax:

Chapter 21: Installing an Info File 153

INFOPATH=/local/info:export INFOPATH
will search `/local/info' �rst, then the standard directories. Leading or doubled colonsare not treated specially.
21.3 Installing Info Directory Files

When you install an Info �le onto your system, you can use the program install-info to update the Info directory �le `dir'. Normally the make�le for the package runsinstall-info, just after copying the Info �le into its proper installed location.
In order for the Info �le to work with install-info, you should use the commands@dircategory and @direntry in the Texinfo source �le. Use @direntry to specify themenu entry to add to the Info directory �le, and use @dircategory to specify which partof the Info directory to put it in. Here is how these commands are used in this manual:
@dircategory Texinfo documentation system@direntry* Texinfo: (texinfo). The GNU documentation format.* install-info: (texinfo)Invoking install-info.@end direntry

Here's what this produces in the Info �le:
INFO-DIR-SECTION Texinfo documentation systemSTART-INFO-DIR-ENTRY* Texinfo: (texinfo). The GNU documentation format.* install-info: (texinfo)Invoking install-info.END-INFO-DIR-ENTRY

The install-info program sees these lines in the Info �le, and that is how it knows whatto do.
Always use the @direntry and @dircategory commands near the beginning of theTexinfo input, before the �rst @node command. If you use them later on in the input,install-info will not notice them.
If you use @dircategory more than once in the Texinfo source, each usage speci�esone category; the new menu entry is added to the Info directory �le in each of the categoriesyou specify. If you use @direntry more than once, each usage speci�es one menu entry;each of these menu entries is added to the directory in each of the speci�ed categories.

21.4 Invoking install-info
install-info inserts menu entries from an Info �le into the top-level `dir' �le in theInfo system (see the previous sections for an explanation of how the `dir' �le works). It'smost often run as part of software installation, or when constructing a dir �le for all manualson a system. Synopsis:
install-info [option]... [info-�le [dir-�le]]

154 Texinfo 3.12

If info-�le or dir-�le are not speci�ed, the various options (described below) that de�nethem must be. There are no compile-time defaults, and standard input is never used.install-info can read only one info �le and write only one dir �le per invocation.If dir-�le (however speci�ed) does not exist, install-info creates it if possible (withno entries).Options:
--delete Delete the entries in info-�le from dir-�le . The �le name in the entry in dir-�lemust be info-�le (except for an optional `.info' in either one). Don't insertany new entries.
--dir-file=nameSpecify �le name of the Info directory �le. This is equivalent to using the dir-�leargument.
--entry=textInsert text as an Info directory entry; text should have the form of an Info menuitem line plus zero or more extra lines starting with whitespace. If you specifymore than one entry, they are all added. If you don't specify any entries, theyare determined from information in the Info �le itself.
--help Display a usage message listing basic usage and all available options, then exitsuccessfully.
--info-file=�leSpecify Info �le to install in the directory. This is equivalent to using the

info-�le argument.
--info-dir=dirEquivalent to `--dir-file=dir /dir'.
--item=textSame as `--entry=text '. An Info directory entry is actually a menu item.
--quiet Suppress warnings.
--remove Same as `--delete'.
--section=secPut this �le's entries in section sec of the directory. If you specify more thanone section, all the entries are added in each of the sections. If you don't specifyany sections, they are determined from information in the Info �le itself.
--version Display version information and exit successfully.

Appendix A: @-Command List 155

Appendix A @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [], indicateoptional arguments; an ellipsis, `...', indicates repeated text.
@whitespaceAn @ followed by a space, tab, or newline produces a normal, stretchable, in-terword space. See Section 13.2.3 [Multiple Spaces], page 100.
@! Generate an exclamation point that really does end a sentence (usually after anend-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 100.
@"@' Generate an umlaut or acute accent, respectively, over the next character, asin �o and �o. See Section 13.3 [Inserting Accents], page 101.
@* Force a line break. Do not end a paragraph that uses @* with an @refillcommand. See Section 14.1 [Line Breaks], page 109.
@,{c} Generate a cedilla accent under c, as in �c. See Section 13.3 [Inserting Accents],page 101.
@- Insert a discretionary hyphenation point. See Section 14.2 [- and hyphenation],page 110.
@. Produce a period that really does end a sentence (usually after an end-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 100.
@: Indicate to TEX that an immediately preceding period, question mark, excla-mation mark, or colon does not end a sentence. Prevent TEX from insertingextra whitespace as it does at the end of a sentence. The command has no e�ecton the Info �le output. See Section 13.2.1 [Not Ending a Sentence], page 99.
@= Generate a macro (bar) accent over the next character, as in �o. See Section 13.3[Inserting Accents], page 101.
@? Generate a question mark that really does end a sentence (usually after an end-of-sentence capital letter). See Section 13.2.2 [Ending a Sentence], page 100.
@@ Stands for an at sign, `@'. See Section 13.1 [Inserting @ and braces], page 99.
@^@` Generate a circum
ex (hat) or grave accent, respectively, over the next charac-ter, as in ô. See Section 13.3 [Inserting Accents], page 101.
@{ Stands for a left brace, `{'. See Section 13.1 [Inserting @ and braces], page 99.
@} Stands for a right-hand brace, `}'.See Section 13.1 [Inserting @ and braces], page 99.
@= Generate a tilde accent over the next character, as in ~N. See Section 13.3[Inserting Accents], page 101.
@AA{}@aa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:�A, �a. See Section 13.3 [Inserting Accents], page 101.

156 Texinfo 3.12

@AE{}@ae{} Generate the uppercase and lowercase AE ligatures, respectively: �, �. SeeSection 13.3 [Inserting Accents], page 101.
@afourpaperChange page dimensions for the A4 paper size. Only allowed inside @iftex . . .@end iftex. See Section 19.11 [A4 Paper], page 141.
@appendix titleBegin an appendix. The title appears in the table of contents of a printedmanual. In Info, the title is underlined with asterisks. See Section 5.5 [The@unnumbered and @appendix Commands], page 45.
@appendixsec title@appendixsection titleBegin an appendix section within an appendix. The section title appears in thetable of contents of a printed manual. In Info, the title is underlined with equalsigns. @appendixsection is a longer spelling of the @appendixsec command.See Section 5.8 [Section Commands], page 46.
@appendixsubsec titleBegin an appendix subsection within an appendix. The title appears in thetable of contents of a printed manual. In Info, the title is underlined withhyphens. See Section 5.10 [Subsection Commands], page 47.
@appendixsubsubsec titleBegin an appendix subsubsection within an appendix subsection. The titleappears in the table of contents of a printed manual. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 47.
@asis Used following @table, @ftable, and @vtable to print the table's �rst columnwithout highlighting (\as is"). See Section 11.3 [Making a Two-column Table],page 88.
@author authorTypeset author
ushleft and underline it. See Section 3.4.3 [The @title and@author Commands], page 32.
@b{text } Print text in bold font. No e�ect in Info. See Section 9.2.3 [Fonts], page 76.
@bullet{} Generate a large round dot, or the closest possible thing to one. See Sec-tion 13.4.2 [@bullet], page 102.
@bye Stop formatting a �le. The formatters do not see the contents of a �le followingan @bye command. See Chapter 4 [Ending a File], page 39.
@c commentBegin a comment in Texinfo. The rest of the line does not appear in eitherthe Info �le or the printed manual. A synonym for @comment. See Section 1.5[Comments], page 7.

Appendix A: @-Command List 157

@cartoucheHighlight an example or quotation by drawing a box with rounded cornersaround it. Pair with @end cartouche. No e�ect in Info. See Section 10.11[Drawing Cartouches Around Examples], page 84.)
@center line-of-textCenter the line of text following the command. See Section 3.4.2 [@center],page 32.
@centerchap line-of-textLike @chapter, but centers the chapter title. See Section 5.4 [@chapter],page 44.
@chapheading titlePrint a chapter-like heading in the text, but not in the table of contents of aprinted manual. In Info, the title is underlined with asterisks. See Section 5.6[@majorheading and @chapheading], page 45.
@chapter titleBegin a chapter. The chapter title appears in the table of contents of aprinted manual. In Info, the title is underlined with asterisks. See Section 5.4[@chapter], page 44.
@cindex entryAdd entry to the index of concepts. See Section 12.1 [De�ning the Entries ofan Index], page 93.
@cite{reference}Highlight the name of a book or other reference that lacks a companion Info�le. See Section 9.1.8 [@cite], page 74.
@clear
ag Unset
ag , preventing the Texinfo formatting commands from formatting textbetween subsequent pairs of @ifset
ag and @end ifset commands, and pre-venting @value{
ag } from expanding to the value to which
ag is set. SeeSection 17.3 [@set @clear @value], page 128.
@code{sample-code}Highlight text that is an expression, a syntactically complete token of a pro-gram, or a program name. See Section 9.1.1 [@code], page 70.
@comment commentBegin a comment in Texinfo. The rest of the line does not appear in either theInfo �le or the printed manual. A synonym for @c. See Section 1.5 [Comments],page 7.
@contents Print a complete table of contents. Has no e�ect in Info, which uses menusinstead. See Section 4.2 [Generating a Table of Contents], page 40.
@copyright{}Generate a copyright symbol. See Section 13.5.2 [@copyright], page 103.

158 Texinfo 3.12

@defcodeindex index-nameDe�ne a new index and its indexing command. Print entries in an @code font.See Section 12.5 [De�ning New Indices], page 96.
@defcv category class name@defcvx category class nameFormat a description for a variable associated with a class in object-orientedprogramming. Takes three arguments: the category of thing being de�ned, theclass to which it belongs, and its name. See Chapter 15 [De�nition Commands],page 113, and Section 15.3 [Def Cmds in Detail], page 115.
@deffn category name arguments...@deffnx category name arguments...Format a description for a function, interactive command, or similar entity thatmay take arguments. @deffn takes as arguments the category of entity beingdescribed, the name of this particular entity, and its arguments, if any. SeeChapter 15 [De�nition Commands], page 113.
@defindex index-nameDe�ne a new index and its indexing command. Print entries in a roman font.See Section 12.5 [De�ning New Indices], page 96.
@definfoenclose new-command, before, after,Create new @-command for Info that marks text by enclosing it in stringsthat precede and follow the text. Write de�nition inside of @ifinfo . . . @endifinfo. See Section 9.2.4 [Customized Highlighting], page 76.
@defivar class instance-variable-name@defivarx class instance-variable-nameThis command formats a description for an instance variable in object-orientedprogramming. The command is equivalent to `@defcv {Instance Variable}...'. See Chapter 15 [De�nition Commands], page 113, and Section 15.3 [DefCmds in Detail], page 115.
@defmac macro-name arguments...@defmacx macro-name arguments...Format a description for a macro. The command is equivalent to `@deffn Macro...'. See Chapter 15 [De�nition Commands], page 113, and Section 15.3 [DefCmds in Detail], page 115.
@defmethod class method-name arguments...@defmethodx class method-name arguments...Format a description for a method in object-oriented programming. The com-mand is equivalent to `@defop Method ...'. Takes as arguments the name ofthe class of the method, the name of the method, and its arguments, if any.See Chapter 15 [De�nition Commands], page 113, and Section 15.3 [Def Cmdsin Detail], page 115.
@defop category class name arguments...@defopx category class name arguments...Format a description for an operation in object-oriented programming. @defoptakes as arguments the overall name of the category of operation, the name of

Appendix A: @-Command List 159

the class of the operation, the name of the operation, and its arguments, if any.See Chapter 15 [De�nition Commands], page 113, and Section 15.3 [Def Cmdsin Detail], page 115.
@defopt option-name@defoptx option-nameFormat a description for a user option. The command is equivalent to `@defvr{User Option} ...'. See Chapter 15 [De�nition Commands], page 113, andSection 15.3 [Def Cmds in Detail], page 115.
@defspec special-form-name arguments...@defspecx special-form-name arguments...Format a description for a special form. The command is equivalent to `@deffn{Special Form} ...'. See Chapter 15 [De�nition Commands], page 113, andSection 15.3 [Def Cmds in Detail], page 115.
@deftp category name-of-type attributes...@deftpx category name-of-type attributes...Format a description for a data type. @deftp takes as arguments the category,the name of the type (which is a word like `int' or `float'), and then the namesof attributes of objects of that type. See Chapter 15 [De�nition Commands],page 113, and Section 15.3 [Def Cmds in Detail], page 115.
@deftypefn classi�cation data-type name arguments...@deftypefnx classi�cation data-type name arguments...Format a description for a function or similar entity that may take argumentsand that is typed. @deftypefn takes as arguments the classi�cation of entitybeing described, the type, the name of the entity, and its arguments, if any. SeeChapter 15 [De�nition Commands], page 113, and Section 15.3 [Def Cmds inDetail], page 115.
@deftypefun data-type function-name arguments...@deftypefunx data-type function-name arguments...Format a description for a function in a typed language. The command is equiv-alent to `@deftypefn Function ...'. See Chapter 15 [De�nition Commands],page 113, and Section 15.3 [Def Cmds in Detail], page 115.
@deftypemethod class data-type method-name arguments...@deftypemethodx class data-type method-name arguments...Format a description for a typed method in object-oriented programming.Takes as arguments the name of the class of the method, the return type ofthe method, the name of the method, and its arguments, if any. See Chap-ter 15 [De�nition Commands], page 113, and Section 15.3 [Def Cmds in Detail],page 115.
@deftypevr classi�cation data-type name@deftypevrx classi�cation data-type nameFormat a description for something like a variable in a typed language|anentity that records a value. Takes as arguments the classi�cation of entity beingdescribed, the type, and the name of the entity. See Chapter 15 [De�nitionCommands], page 113, and Section 15.3 [Def Cmds in Detail], page 115.

160 Texinfo 3.12

@deftypevar data-type variable-name@deftypevarx data-type variable-nameFormat a description for a variable in a typed language. The command is equiv-alent to `@deftypevr Variable ...'. See Chapter 15 [De�nition Commands],page 113, and Section 15.3 [Def Cmds in Detail], page 115.
@defun function-name arguments...@defunx function-name arguments...Format a description for functions. The command is equivalent to `@deffnFunction ...'. See Chapter 15 [De�nition Commands], page 113, and Sec-tion 15.3 [Def Cmds in Detail], page 115.
@defvar variable-name@defvarx variable-nameFormat a description for variables. The command is equivalent to `@defvrVariable ...'. See Chapter 15 [De�nition Commands], page 113, and Sec-tion 15.3 [Def Cmds in Detail], page 115.
@defvr category name@defvrx category nameFormat a description for any kind of variable. @defvr takes as arguments thecategory of the entity and the name of the entity. See Chapter 15 [De�nitionCommands], page 113, and Section 15.3 [Def Cmds in Detail], page 115.
@detailmenu{}Avoid makeinfo confusion stemming from the detailed node listing in a mastermenu. See Section 3.5.1 [Master Menu Parts], page 36.
@dfn{term}Highlight the introductory or de�ning use of a term. See Section 9.1.7 [@dfn],page 74.
@dircategory dirpartSpecify a part of the Info directory menu where this �le's entry should go. SeeSection 21.3 [Installing Dir Entries], page 153.
@direntry Begin the Info directory menu entry for this �le. See Section 21.3 [InstallingDir Entries], page 153.
@display Begin a kind of example. Indent text, do not �ll, do not select a new font. Pairwith @end display. See Section 10.7 [@display], page 83.
@dmn{dimension}Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before

dimension. No e�ect in Info. See Section 13.2.4 [@dmn], page 101.
@dotaccent{c}Generate a dot accent over the character c, as in _oo. See Section 13.3 [InsertingAccents], page 101.
@dots{} Insert an ellipsis: `...'. See Section 13.4.1 [@dots{}], page 102.

Appendix A: @-Command List 161

@email{address[, displayed-text]}Indicate an electronic mail address. See Section 9.1.10 [@email], page 74.
@emph{text }Highlight text ; text is displayed in italics in printed output, and surrounded byasterisks in Info. See Section 9.2 [Emphasizing Text], page 75.
@end environmentEnds environment, as in `@end example'. See Section 1.3 [@-commands], page 6.
@enddots{}Generate an end-of-sentence of ellipsis, like this See Section 13.4.1[@dots{}], page 102.
@enumerate [number-or-letter]Begin a numbered list, using @item for each entry. Optionally, start list with

number-or-letter. Pair with @end enumerate. See Section 11.2 [@enumerate],page 87.
@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: `� '.See Section 13.9.5 [Equivalence], page 106.
@error{} Indicate to the reader with a glyph that the following text is an error message:` error '. See Section 13.9.4 [Error Glyph], page 105.
@evenfooting [left] @| [center] @| [right]@evenheading [left] @| [center] @| [right]Specify page footings resp. headings for even-numbered (left-hand) pages. Onlyallowed inside @iftex. See Section F.3 [How to Make Your Own Headings],page 189.
@everyfooting [left] @| [center] @| [right]@everyheading [left] @| [center] @| [right]Specify page footings resp. headings for every page. Not relevant to Info. SeeSection F.3 [How to Make Your Own Headings], page 189.
@example Begin an example. Indent text, do not �ll, and select �xed-width font. Pairwith @end example. See Section 10.3 [@example], page 80.
@exclamdown{}Produce an upside-down exclamation point. See Section 13.3 [Inserting Ac-cents], page 101.
@exdent line-of-textRemove any indentation a line might have. See Section 10.9 [Undoing theIndentation of a Line], page 83.
@expansion{}Indicate the result of a macro expansion to the reader with a special glyph:` 7!'. See Section 13.9.2 [7! Indicating an Expansion], page 104.
@file{�lename}Highlight the name of a �le, bu�er, node, or directory. See Section 9.1.6 [@file],page 73.

162 Texinfo 3.12

@finalout Prevent TEX from printing large black warning rectangles beside over-wide lines.See Section 19.9 [Overfull hboxes], page 140.
@findex entryAdd entry to the index of functions. See Section 12.1 [De�ning the Entries ofan Index], page 93.
@flushleft@flushrightLeft justify every line but leave the right end ragged. Leave font as is. Pair with@end flushleft. @flushright analogous. See Section 10.10 [@flushleft and@flushright], page 83.
@footnote{text-of-footnote}Enter a footnote. Footnote text is printed at the bottom of the page by TEX;Info may format in either `End' node or `Separate' node style. See Chapter 16[Footnotes], page 125.
@footnotestyle styleSpecify an Info �le's footnote style, either `end' for the end node style or`separate' for the separate node style. See Chapter 16 [Footnotes], page 125.
@format Begin a kind of example. Like @example or @display, but do not narrow themargins and do not select the �xed-width font. Pair with @end format. SeeSection 10.3 [@example], page 80.
@ftable formatting-commandBegin a two-column table, using @item for each entry. Automatically entereach of the items in the �rst column into the index of functions. Pair with @endftable. The same as @table, except for indexing. See Section 11.3.1 [@ftableand @vtable], page 89.
@group Hold text together that must appear on one printed page. Pair with @endgroup. Not relevant to Info. See Section 14.6 [@group], page 111.
@H{c} Generate the long Hungarian umlaut accent over c, as in }o.
@heading titlePrint an unnumbered section-like heading in the text, but not in the table ofcontents of a printed manual. In Info, the title is underlined with equal signs.See Section 5.8 [Section Commands], page 46.
@headings on-o�-single-doubleTurn page headings on or o�, and/or specify single-sided or double-sided pageheadings for printing. See Section 3.4.6 [The @headings Command], page 34.
@html Enter HTML completely. Pair with @end html. See Section 17.2 [Raw Format-ter Commands], page 128.
@hyphenation{hy-phen-a-ted words}Explicitly de�ne hyphenation points. See Section 14.2 [@- and @hyphenation],page 110.
@i{text } Print text in italic font. No e�ect in Info. See Section 9.2.3 [Fonts], page 76.

Appendix A: @-Command List 163

@ifclear
agIf
ag is cleared, the Texinfo formatting commands format text between@ifclear
ag and the following @end ifclear command. See Section 17.3[@set @clear @value], page 128.
@ifhtml@ifinfo Begin a stretch of text that will be ignored by TEX when it typesets the printedmanual. The text appears only in the HTML resp. Info �le. Pair with @endifhtml resp. @end ifinfo. See Chapter 17 [Conditionals], page 127.
@ifnothtml@ifnotinfo@ifnottex Begin a stretch of text that will be ignored in one output format but not theothers. The text appears only in the format not speci�ed. Pair with @endifnothtml resp. @end ifnotinfo resp. @end ifnotinfo. See Chapter 17 [Con-ditionals], page 127.
@ifset
ag If
ag is set, the Texinfo formatting commands format text between @ifset

ag and the following @end ifset command. See Section 17.3 [@set @clear@value], page 128.
@iftex Begin a stretch of text that will not appear in the Info �le, but will be processedonly by TEX. Pair with @end iftex. See Chapter 17 [Conditionally VisibleText], page 127.
@ignore Begin a stretch of text that will not appear in either the Info �le or the printedoutput. Pair with @end ignore. See Section 1.5 [Comments and Ignored Text],page 7.
@image{�lename, [width], [height]}Include graphics image in external �lename scaled to the given width and/or

height. See Section 13.10 [Images], page 107.
@include �lenameIncorporate the contents of the �le �lename into the Info �le or printed docu-ment. See Appendix E [Include Files], page 183.
@inforef{node-name, [entry-name], info-�le-name }Make a cross reference to an Info �le for which there is no printed manual. SeeSection 8.7 [Cross references using @inforef], page 67.
\input macro-de�nitions-�leUse the speci�ed macro de�nitions �le. This command is used only in the�rst line of a Texinfo �le to cause TEX to make use of the `texinfo' macrode�nitions �le. The backslash in \input is used instead of an @ because TEXdoes not recognize @ until after it has read the de�nitions �le. See Section 3.2[The Texinfo File Header], page 26.
@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;indicate the beginning of the text of a �rst column entry for @table, @ftable,and @vtable. See Chapter 11 [Lists and Tables], page 85.

164 Texinfo 3.12

@itemize mark-generating-character-or-commandProduce a sequence of indented paragraphs, with a mark inside the left marginat the beginning of each paragraph. Pair with @end itemize. See Section 11.1[@itemize], page 85.
@itemx Like @item but do not generate extra vertical space above the item text. SeeSection 11.3.2 [@itemx], page 89.
@kbd{keyboard-characters}Indicate text that is characters of input to be typed by users. See Section 9.1.2[@kbd], page 71.
@kbdinputstyle styleSpecify when @kbd should use a font distinct from @code. See Section 9.1.2[@kbd], page 71.
@key{key-name}Indicate a name for a key on a keyboard. See Section 9.1.3 [@key], page 71.
@kindex entryAdd entry to the index of keys. See Section 12.1 [De�ning the Entries of anIndex], page 93.
@L{}@l{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively: L, l.
@lisp Begin an example of Lisp code. Indent text, do not �ll, and select �xed-widthfont. Pair with @end lisp. See Section 10.5 [@lisp], page 82.
@lowersectionsChange subsequent chapters to sections, sections to subsections, and so on. SeeSection 5.12 [@raisesections and @lowersections], page 48.
@macro macro-name{params}De�ne a new Texinfo command @macro-name{params}. Only supported bymakeinfo and texi2dvi. See Section 18.1 [De�ning Macros], page 133.
@majorheading titlePrint a chapter-like heading in the text, but not in the table of contents of aprinted manual. Generate more vertical whitespace before the heading thanthe @chapheading command. In Info, the chapter heading line is underlinedwith asterisks. See Section 5.6 [@majorheading and @chapheading], page 45.
@math{mathematical-expression}Format a mathematical expression. See Section 13.8 [@math - Inserting Mathe-matical Expressions], page 103.
@menu Mark the beginning of a menu of nodes in Info. No e�ect in a printed manual.Pair with @end menu. See Chapter 7 [Menus], page 55.
@minus{} Generate a minus sign, `�'. See Section 13.7 [@minus], page 103.
@multitable column-width-specBegin a multi-column table. Pair with @end multitable. See Section 11.4.1[Multitable Column Widths], page 90.

Appendix A: @-Command List 165

@need n Start a new page in a printed manual if fewer than n mils (thousandths of aninch) remain on the current page. See Section 14.7 [@need], page 112.
@node name, next, previous, upDe�ne the beginning of a new node in Info, and serve as a locator for referencesfor TEX. See Section 6.2 [@node], page 50.
@noindent Prevent text from being indented as if it were a new paragraph. See Section 10.4[@noindent], page 81.
@O{}@o{} Generate the uppercase and lowercase O-with-slash letters, respectively: �, �.
@oddfooting [left] @| [center] @| [right]@oddheading [left] @| [center] @| [right]Specify page footings resp. headings for odd-numbered (right-hand) pages. Onlyallowed inside @iftex. See Section F.3 [How to Make Your Own Headings],page 189.
@OE{}@oe{} Generate the uppercase and lowercase OE ligatures, respectively: �, �. SeeSection 13.3 [Inserting Accents], page 101.
@page Start a new page in a printed manual. No e�ect in Info. See Section 14.5[@page], page 111.
@paragraphindent indentIndent paragraphs by indent number of spaces; delete indentation if the valueof indent is 0; and do not change indentation if indent is asis. See Section 3.2.6[Paragraph Indenting], page 30.
@pindex entryAdd entry to the index of programs. See Section 12.1 [De�ning the Entries ofan Index], page 93.
@point{} Indicate the position of point in a bu�er to the reader with a glyph: `?'. SeeSection 13.9.6 [Indicating Point in a Bu�er], page 106.
@pounds{} Generate the pounds sterling currency sign. See Section 13.6 [@pounds{}],page 103.
@print{} Indicate printed output to the reader with a glyph: ` a '. See Section 13.9.3[Print Glyph], page 105.
@printindex index-namePrint an alphabetized two-column index in a printed manual or generate analphabetized menu of index entries for Info. See Section 4.1 [Printing Indices& Menus], page 39.
@pxref{node-name, [entry], [topic-or-title], [info-�le], [manual]}Make a reference that starts with a lower case `see' in a printed manual. Usewithin parentheses only. Do not follow command with a punctuation mark|the Info formatting commands automatically insert terminating punctuation

166 Texinfo 3.12

as needed. Only the �rst argument is mandatory. See Section 8.6 [@pxref],page 66.
@questiondown{}Generate an upside-down question mark. See Section 13.3 [Inserting Accents],page 101.
@quotationNarrow the margins to indicate text that is quoted from another real or imag-inary work. Write command on a line of its own. Pair with @end quotation.See Section 10.2 [@quotation], page 80.
@r{text } Print text in roman font. No e�ect in Info. See Section 9.2.3 [Fonts], page 76.
@raisesectionsChange subsequent sections to chapters, subsections to sections, and so on. SeeSection 5.12 [@raisesections and @lowersections], page 48.
@ref{node-name, [entry], [topic-or-title], [info-�le], [manual]}Make a reference. In a printed manual, the reference does not start with a`See'. Follow command with a punctuation mark. Only the �rst argument ismandatory. See Section 8.5 [@ref], page 65.
@refill In Info, re�ll and indent the paragraph after all the other processing has beendone. No e�ect on TEX, which always re�lls. This command is no longerneeded, since all formatters now automatically re�ll. See Appendix H [Re�llingParagraphs], page 199.
@result{} Indicate the result of an expression to the reader with a special glyph: `)'. SeeSection 13.9.1 [@result], page 104.
@ringaccent{c}Generate a ring accent over the next character, as in �o. See Section 13.3 [In-serting Accents], page 101.
@samp{text }Highlight text that is a literal example of a sequence of characters. Used forsingle characters, for statements, and often for entire shell commands. SeeSection 9.1.4 [@samp], page 72.
@sc{text } Set text in a printed output in the small caps font and set text in the Info�le in uppercase letters. See Section 9.2.2 [Smallcaps], page 75.
@section titleBegin a section within a chapter. In a printed manual, the section title isnumbered and appears in the table of contents. In Info, the title is underlinedwith equal signs. See Section 5.7 [@section], page 45.
@set
ag [string]Make
ag active, causing the Texinfo formatting commands to format text be-tween subsequent pairs of @ifset
ag and @end ifset commands. Optionally,set value of
ag to string. See Section 17.3 [@set @clear @value], page 128.

Appendix A: @-Command List 167

@setchapternewpage on-o�-oddSpecify whether chapters start on new pages, and if so, whether on odd-numbered (right-hand) new pages. See Section 3.2.5 [@setchapternewpage],page 29.
@setfilename info-�le-nameProvide a name to be used by the Info �le. This command is essential forTEX formatting as well, even though it produces no output. See Section 3.2.3[@setfilename], page 27.
@settitle titleProvide a title for page headers in a printed manual. See Section 3.2.4[@settitle], page 28.
@shortcontentsPrint a short table of contents. Not relevant to Info, which uses menus ratherthan tables of contents. A synonym for @summarycontents. See Section 4.2[Generating a Table of Contents], page 40.
@shorttitlepage{title }Generate a minimal title page. See Section 3.4.1 [@titlepage], page 31.
@smallbookCause TEX to produce a printed manual in a 7 by 9.25 inch format rather thanthe regular 8.5 by 11 inch format. See Section 19.10 [Printing Small Books],page 141. Also, see Section 10.6 [@smallexample and @smalllisp], page 82.
@smallexampleIndent text to indicate an example. Do not �ll, select �xed-width font. In@smallbook format, print text in a smaller font than with @example. Pairwith @end smallexample. See Section 10.6 [@smallexample and @smalllisp],page 82.
@smalllispBegin an example of Lisp code. Indent text, do not �ll, select �xed-width font.In @smallbook format, print text in a smaller font. Pair with @end smalllisp.See Section 10.6 [@smallexample and @smalllisp], page 82.
@sp n Skip n blank lines. See Section 14.4 [@sp], page 111.
@ss{} Generate the German sharp-S es-zet letter, �. See Section 13.3 [Inserting Ac-cents], page 101.
@strong textEmphasize text by typesetting it in a bold font for the printed manual and bysurrounding it with asterisks for Info. See Section 9.2.1 [Emphasizing Text],page 75.
@subheading titlePrint an unnumbered subsection-like heading in the text, but not in the table ofcontents of a printed manual. In Info, the title is underlined with hyphens. SeeSection 5.10 [@unnumberedsubsec @appendixsubsec @subheading], page 47.

168 Texinfo 3.12

@subsection titleBegin a subsection within a section. In a printed manual, the subsection title isnumbered and appears in the table of contents. In Info, the title is underlinedwith hyphens. See Section 5.9 [@subsection], page 46.
@subsubheading titlePrint an unnumbered subsubsection-like heading in the text, but not in thetable of contents of a printed manual. In Info, the title is underlined withperiods. See Section 5.11 [The `subsub' Commands], page 47.
@subsubsection titleBegin a subsubsection within a subsection. In a printed manual, the subsubsec-tion title is numbered and appears in the table of contents. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 47.
@subtitle titleIn a printed manual, set a subtitle in a normal sized font
ush to the right-hand side of the page. Not relevant to Info, which does not have title pages.See Section 3.4.3 [@title @subtitle and @author Commands], page 32.
@summarycontentsPrint a short table of contents. Not relevant to Info, which uses menus ratherthan tables of contents. A synonym for @shortcontents. See Section 4.2[Generating a Table of Contents], page 40.
@syncodeindex from-index into-indexMerge the index named in the �rst argument into the index named in thesecond argument, printing the entries from the �rst index in @code font. SeeSection 12.4 [Combining Indices], page 95.
@synindex from-index into-indexMerge the index named in the �rst argument into the index named in the secondargument. Do not change the font of from-index entries. See Section 12.4[Combining Indices], page 95.
@t{text } Print text in a fixed-width, typewriter-like font. No e�ect in Info. See Sec-tion 9.2.3 [Fonts], page 76.
@tab Separate columns in a multitable. See Section 11.4.2 [Multitable Rows], page 90.
@table formatting-commandBegin a two-column table, using @item for each entry. Write each �rst columnentry on the same line as @item. First column entries are printed in the fontresulting from formatting-command. Pair with @end table. See Section 11.3[Making a Two-column Table], page 88. Also see Section 11.3.1 [@ftable and@vtable], page 89, and Section 11.3.2 [@itemx], page 89.
@TeX{} Insert the logo TEX. See Section 13.5 [Inserting TEX and c
], page 103.
@tex Enter TEX completely. Pair with @end tex. See Section 17.2 [Raw FormatterCommands], page 128.

Appendix A: @-Command List 169

@thischapter@thischaptername@thisfile@thispage@thistitleOnly allowed in a heading or footing. Stands for the number and name of thecurrent chapter (in the format `Chapter 1: Title'), the chapter name only, the�lename, the current page number, and the title of the document, respectively.See Section F.3 [How to Make Your Own Headings], page 189.
@tieaccent{cc}Generate a tie-after accent over the next two characters cc, as in `�oo'. SeeSection 13.3 [Inserting Accents], page 101.
@tindex entryAdd entry to the index of data types. See Section 12.1 [De�ning the Entries ofan Index], page 93.
@title title In a printed manual, set a title
ush to the left-hand side of the page in alarger than normal font and underline it with a black rule. Not relevant to Info,which does not have title pages. See Section 3.4.3 [The @title @subtitle and@author Commands], page 32.
@titlefont{text }In a printed manual, print text in a larger than normal font. Not relevantto Info, which does not have title pages. See Section 3.4.2 [The @titlefont@center and @sp Commands], page 32.
@titlepageIndicate to Texinfo the beginning of the title page. Write command on a lineof its own. Pair with @end titlepage. Nothing between @titlepage and @endtitlepage appears in Info. See Section 3.4.1 [@titlepage], page 31.
@today{} Insert the current date, in `1 Jan 1900' style. See Section F.3 [How to MakeYour Own Headings], page 189.
@top title In a Texinfo �le to be formatted with makeinfo, identify the topmost @nodeline in the �le, which must be written on the line immediately preceding the@top command. Used for makeinfo's node pointer insertion feature. The ti-tle is underlined with asterisks. Both the @node line and the @top line nor-mally should be enclosed by @ifinfo and @end ifinfo. In TEX and texinfo-format-buffer, the @top command is merely a synonym for @unnumbered. SeeSection 6.3 [Creating Pointers with makeinfo], page 54.
@u{c}@ubaraccent{c}@udotaccent{c}Generate a breve, underbar, or underdot accent, respectively, over or under thecharacter c, as in �o, o�, o. . See Section 13.3 [Inserting Accents], page 101.

170 Texinfo 3.12

@unnumbered titleIn a printed manual, begin a chapter that appears without chapter numbers ofany kind. The title appears in the table of contents of a printed manual. InInfo, the title is underlined with asterisks. See Section 5.5 [@unnumbered and@appendix], page 45.
@unnumberedsec titleIn a printed manual, begin a section that appears without section numbers ofany kind. The title appears in the table of contents of a printed manual. In Info,the title is underlined with equal signs. See Section 5.8 [Section Commands],page 46.
@unnumberedsubsec titleIn a printed manual, begin an unnumbered subsection within a chapter.The title appears in the table of contents of a printed manual. In Info,the title is underlined with hyphens. See Section 5.10 [@unnumberedsubsec@appendixsubsec @subheading], page 47.
@unnumberedsubsubsec titleIn a printed manual, begin an unnumbered subsubsection within a chapter. Thetitle appears in the table of contents of a printed manual. In Info, the title isunderlined with periods. See Section 5.11 [The `subsub' Commands], page 47.
@uref{url[, displayed-text}De�ne a cross reference to an external uniform resource locator for the WorldWide Web. See Section 9.1.9 [@url], page 74.
@url{url} Indicate text that is a uniform resource locator for the World Wide Web. SeeSection 9.1.9 [@url], page 74.
@v{c} Generate check accent over the character c, as in �o. See Section 13.3 [InsertingAccents], page 101.
@value{
ag }Replace
ag with the value to which it is set by @set
ag . See Section 17.3[@set @clear @value], page 128.
@var{metasyntactic-variable}Highlight a metasyntactic variable, which is something that stands for anotherpiece of text. See Section 9.1.5 [Indicating Metasyntactic Variables], page 73.
@vindex entryAdd entry to the index of variables. See Section 12.1 [De�ning the Entries ofan Index], page 93.
@vskip amountIn a printed manual, insert whitespace so as to push text on the remainder ofthe page towards the bottom of the page. Used in formatting the copyrightpage with the argument `0pt plus 1filll'. (Note spelling of `filll'.) @vskipmay be used only in contexts ignored for Info. See Section 3.4.4 [The CopyrightPage and Printed Permissions], page 33.

Appendix A: @-Command List 171

@vtable formatting-commandBegin a two-column table, using @item for each entry. Automatically entereach of the items in the �rst column into the index of variables. Pair with @endvtable. The same as @table, except for indexing. See Section 11.3.1 [@ftableand @vtable], page 89.
@w{text } Prevent text from being split across two lines. Do not end a paragraph thatuses @w with an @refill command. See Section 14.3 [@w], page 110.
@xref{node-name, [entry], [topic-or-title], [info-�le], [manual]}Make a reference that starts with `See' in a printed manual. Follow commandwith a punctuation mark. Only the �rst argument is mandatory. See Section 8.3[@xref], page 61.

172 Texinfo 3.12

Appendix B: Tips and Hints 173

Appendix B Tips and Hints
Here are some tips for writing Texinfo documentation:� Write in the present tense, not in the past or the future.� Write actively! For example, write \We recommend that . . . " rather than \It is rec-ommended that . . . ".� Use 70 or 72 as your �ll column. Longer lines are hard to read.� Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in di�erent ways. Readers like indices; they are helpful andconvenient.Although it is easiest to write index entries as you write the body of the text, somepeople prefer to write entries afterwards. In either case, write an entry before the paragraphto which it applies. This way, an index entry points to the �rst page of a paragraph that issplit across pages.Here are more hints we have found valuable:� Write each index entry di�erently, so each entry refers to a di�erent place in the doc-ument.� Write index entries only where a topic is discussed signi�cantly. For example, it is notuseful to index \debugging information" in a chapter on reporting bugs. Someone whowants to know about debugging information will certainly not �nd it in that chapter.� Consistently capitalize the �rst word of every concept index entry, or else consistentlyuse lower case. Terse entries often call for lower case; longer entries for capitalization.Whichever case convention you use, please use one or the other consistently! Mixingthe two styles looks bad.� Always capitalize or use upper case for those words in an index for which this is proper,such as names of countries or acronyms. Always use the appropriate case for case-sensitive names, such as those in C or Lisp.� Write the indexing commands that refer to a whole section immediately after the sectioncommand, and write the indexing commands that refer to the paragraph before theparagraph.In the example that follows, a blank line comes after the index entry for \Leaping":@section The Dog and the Fox@cindex Jumping, in general@cindex Leaping
@cindex Dog, lazy, jumped over@cindex Lazy dog jumped over@cindex Fox, jumps over dog@cindex Quick fox jumps over dogThe quick brown fox jumps over the lazy dog.(Note that the example shows entries for the same concept that are written in di�erentways|`Lazy dog', and `Dog, lazy'|so readers can look up the concept in di�erentways.)

174 Texinfo 3.12

Blank Lines

� Insert a blank line between a sectioning command and the �rst following sentence orparagraph, or between the indexing commands associated with the sectioning com-mand and the �rst following sentence or paragraph, as shown in the tip on indexing.Otherwise, a formatter may fold title and paragraph together.� Always insert a blank line before an @table command and after an @end table com-mand; but never insert a blank line after an @table command or before an @end tablecommand.For example,Types of fox:
@table @samp@item QuickJump over lazy dogs.
@item BrownAlso jump over lazy dogs.@end table
@noindentOn the other hand, ...Insert blank lines before and after @itemize . . . @end itemize and @enumerate . . .@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . . .� Write entries in an itemized list as complete sentences; or at least, as complete phrases.Incomplete expressions . . . awkward . . . like this.� Write the prefatory sentence or phrase for a multi-item list or table as a completeexpression. Do not write \You can set:"; instead, write \You can set these variables:".The former expression sounds cut o�.
Editions, Dates and Versions

Write the edition and version numbers and date in three places in every manual:1. In the �rst @ifinfo section, for people reading the Texinfo �le.2. In the @titlepage section, for people reading the printed manual.3. In the `Top' node, for people reading the Info �le.
Also, it helps to write a note before the �rst @ifinfo section to explain what you are doing.For example:@c ===> NOTE! <==@c Specify the edition and version numbers and date@c in *three* places:@c 1. First ifinfo section 2. title page 3. top node@c To find the locations, search for !!set

Appendix B: Tips and Hints 175

@ifinfo@c !!set edition, date, versionThis is Edition 4.03, January 1992,of the @cite{GDB Manual} for GDB Version 4.3....|or use @set and @value (see Section 17.3.3 [@value Example], page 131).
De�nition Commands

De�nition commands are @deffn, @defun, @defmac, and the like, and enable you towrite descriptions in a uniform format.
� Write just one de�nition command for each entity you de�ne with a de�nition com-mand. The automatic indexing feature creates an index entry that leads the reader tothe de�nition.
� Use @table . . . @end table in an appendix that contains a summary of functions, not@deffn or other de�nition commands.

Capitalization

� Capitalize \Texinfo"; it is a name. Do not write the `x' or `i' in upper case.
� Capitalize \Info"; it is a name.
� Write TEX using the @TeX{} command. Note the uppercase `T' and `X'. This commandcauses the formatters to typeset the name according to the wishes of Donald Knuth,who wrote TEX.

Spaces

Do not use spaces to format a Texinfo �le, except inside of @example . . . @end exampleand similar commands.For example, TEX �lls the following:@kbd{C-x v}@kbd{M-x vc-next-action}Perform the next logical operationon the version-controlled filecorresponding to the current buffer.so it looks like this:
C-x v M-x vc-next-action Perform the next logical operation on the version-controlled �le corresponding to the current bu�er.In this case, the text should be formatted with @table, @item, and @itemx, to create atable.

@code, @samp, @var, and ` --- '

� Use @code around Lisp symbols, including command names. For example,The main function is @code{vc-next-action}, ...

176 Texinfo 3.12

� Avoid putting letters such as `s' immediately after an `@code'. Such letters look bad.
� Use @var around meta-variables. Do not write angle brackets around them.
� Use three hyphens in a row, `---', to indicate a long dash. TEX typesets these as along dash and the Info formatters reduce three hyphens to two.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctu-ation is part of the quotation. This practice goes against publishing conventions in theUnited States, but enables the reader to distinguish between the contents of the quotationand the whole passage.For example, you should write the following sentence with the period outside the endquotation marks:
Evidently, `au' is an abbreviation for ``author''.since `au' does not serve as an abbreviation for `author.' (with a period following the word).

Introducing New Terms

� Introduce new terms so that a reader who does not know them can understand themfrom context; or write a de�nition for the term.For example, in the following, the terms \check in", \register" and \delta" are allappearing for the �rst time; the example sentence should be rewritten so they areunderstandable.The major function assists you in checking in a �le to your version controlsystem and registering successive sets of changes to it as deltas.
� Use the @dfn command around a word being introduced, to indicate that the readershould not expect to know the meaning already, and should expect to learn the meaningfrom this passage.

@pxref

Absolutely never use @pxref except in the special context for which it is designed: insideparentheses, with the closing parenthesis following immediately after the closing brace. Oneformatter automatically inserts closing punctuation and the other does not. This meansthat the output looks right both in printed output and in an Info �le, but only when thecommand is used inside parentheses.
Invoking from a Shell

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documen-tation for each program should contain a section that describes this. Unfortunately, if thenode names and titles for these sections are all di�erent, readers �nd it hard to search forthe section.Name such sections with a phrase beginning with the word `Invoking . . . ', as in `In-voking Emacs'; this way users can �nd the section easily.

Appendix B: Tips and Hints 177

ANSI C Syntax

When you use @example to describe a C function's calling conventions, use the ANSIC syntax, like this:void dld_init (char *@var{path});And in the subsequent discussion, refer to the argument values by writing the same argumentnames, again highlighted with @var.Avoid the obsolete style that looks like this:#include <dld.h>
dld_init (path)char *path;Also, it is best to avoid writing #include above the declaration just to indicate thatthe function is declared in a header �le. The practice may give the misimpression that the#include belongs near the declaration of the function. Either state explicitly which header�le holds the declaration or, better yet, name the header �le used for a group of functionsat the beginning of the section that describes the functions.

Bad Examples

Here are several examples of bad writing to avoid:In this example, say, \ . . . you must @dfn{check in} the new version." That
owsbetter.When you are done editing the �le, you must perform a @dfn{check in}.In the following example, say, \. . . makes a uni�ed interface such as VC mode possible."SCCS, RCS and other version-control systems all perform similar functions inbroadly similar ways (it is this resemblance which makes a uni�ed control modelike this possible).And in this example, you should specify what `it' refers to:If you are working with other people, it assists in coordinating everyone'schanges so they do not step on each other.
And Finally . . .

� Pronounce TEX as if the `X' were a Greek `chi', as the last sound in the name `Bach'.But pronounce Texinfo as in `speck': \teckinfo".
� Write notes for yourself at the very end of a Texinfo �le after the @bye. None of theformatters process text after the @bye; it is as if the text were within @ignore . . . @endignore.

178 Texinfo 3.12

Appendix C: A Sample Texinfo File 179

Appendix C A Sample Texinfo File

Here is a complete, short sample Texinfo �le, without any commentary. You can seethis �le, with comments, in the �rst chapter. See Section 1.8 [A Short Sample Texinfo File],page 9.
\input texinfo @c -*-texinfo-*-@c %**start of header@setfilename sample.info@settitle Sample Document@c %**end of header
@setchapternewpage odd
@ifinfoThis is a short example of a complete Texinfo file.
Copyright 1990 Free Software Foundation, Inc.@end ifinfo
@titlepage@sp 10@comment The title is printed in a large font.@center @titlefont{Sample Title}
@c The following two commands start the copyright page.@page@vskip 0pt plus 1filllCopyright @copyright{} 1990 Free Software Foundation, Inc.@end titlepage
@node Top, First Chapter, , (dir)@comment node-name, next, previous, up
@menu* First Chapter:: The first chapter is theonly chapter in this sample.* Concept Index:: This index has two entries.@end menu
@node First Chapter, Concept Index, Top, Top@comment node-name, next, previous, up@chapter First Chapter@cindex Sample index entry
This is the contents of the first chapter.@cindex Another sample index entry
Here is a numbered list.

180 Texinfo 3.12

@enumerate@itemThis is the first item.
@itemThis is the second item.@end enumerate
The @code{makeinfo} and @code{texinfo-format-buffer}commands transform a Texinfo file such as this intoan Info file; and @TeX{} typesets it for a printedmanual.
@node Concept Index, , First Chapter, Top@comment node-name, next, previous, up@unnumbered Concept Index
@printindex cp
@contents@bye

Appendix D: Sample Permissions 181

Appendix D Sample Permissions

Texinfo �les should contain sections that tell the readers that they have the right tocopy and distribute the Texinfo �le, the Info �le, and the printed manual.Also, if you are writing a manual about software, you should explain that the software isfree and either include the GNU General Public License (GPL) or provide a reference to it.See section \Distribution" in XEmacs User's Manual, for an example of the text that couldbe used in the software \Distribution", \General Public License", and \NO WARRANTY"sections of a document. See [Texinfo Copying Conditions], page 1, for an example of a briefexplanation of how the copying conditions provide you with rights.In a Texinfo �le, the �rst @ifinfo section usually begins with a line that says whatthe �le documents. This is what a person reading the unprocessed Texinfo �le or usingthe advanced Info command g * sees �rst. See Info �le `info', node `Expert', for moreinformation. (A reader using the regular Info commands usually starts reading at the �rstnode and skips this �rst section, which is not in a node.)In the @ifinfo section, the summary sentence is followed by a copyright notice andthen by the copying permission notice. One of the copying permission paragraphs is enclosedin @ignore and @end ignore commands. This paragraph states that the Texinfo �le can beprocessed through TEX and printed, provided the printed manual carries the proper copyingpermission notice. This paragraph is not made part of the Info �le since it is not relevant tothe Info �le; but it is a mandatory part of the Texinfo �le since it permits people to processthe Texinfo �le in TEX and print the results.In the printed manual, the Free Software Foundation copying permission notice followsthe copyright notice and publishing information and is located within the region delineatedby the @titlepage and @end titlepage commands. The copying permission notice isexactly the same as the notice in the @ifinfo section except that the paragraph enclosedin @ignore and @end ignore commands is not part of the notice.To make it simple to insert a permission notice into each section of the Texinfo �le,sample permission notices for each section are reproduced in full below.Note that you may need to specify the correct name of a section mentioned in thepermission notice. For example, in The GDB Manual , the name of the section referring tothe General Public License is called the \GDB General Public License", but in the sampleshown below, that section is referred to generically as the \GNU General Public License". Ifthe Texinfo �le does not carry a copy of the General Public License, leave out the referenceto it, but be sure to include the rest of the sentence.
D.1 `ifinfo ' Copying Permissions

In the @ifinfo section of a Texinfo �le, the standard Free Software Foundation per-mission notice reads as follows:This file documents ...
Copyright 1998 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim

182 Texinfo 3.12

copies of this manual provided the copyright notice andthis permission notice are preserved on all copies.
@ignorePermission is granted to process this file through TeXand print the results, provided the printed documentcarries a copying permission notice identical to thisone except for the removal of this paragraph (thisparagraph not being relevant to the printed manual).
@end ignorePermission is granted to copy and distribute modifiedversions of this manual under the conditions forverbatim copying, provided also that the sectionsentitled ``Copying'' and ``GNU General Public License''are included exactly as in the original, and providedthat the entire resulting derived work is distributedunder the terms of a permission notice identical to thisone.
Permission is granted to copy and distributetranslations of this manual into another language,under the above conditions for modified versions,except that this permission notice may be stated in atranslation approved by the Free Software Foundation.

D.2 Titlepage Copying Permissions
In the @titlepage section of a Texinfo �le, the standard Free Software Foundationcopying permission notice follows the copyright notice and publishing information. Thestandard phrasing is as follows:Permission is granted to make and distribute verbatimcopies of this manual provided the copyright notice andthis permission notice are preserved on all copies.
Permission is granted to copy and distribute modifiedversions of this manual under the conditions forverbatim copying, provided also that the sectionsentitled ``Copying'' and ``GNU General Public License''are included exactly as in the original, and providedthat the entire resulting derived work is distributedunder the terms of a permission notice identical to thisone.
Permission is granted to copy and distributetranslations of this manual into another language,under the above conditions for modified versions,except that this permission notice may be stated in atranslation approved by the Free Software Foundation.

Appendix E: Include Files 183

Appendix E Include Files

When TEX or an Info formatting command sees an @include command in a Texinfo�le, it processes the contents of the �le named by the command and incorporates them intothe DVI or Info �le being created. Index entries from the included �le are incorporated intothe indices of the output �le.Include �les let you keep a single large document as a collection of conveniently smallparts.
E.1 How to Use Include Files

To include another �le within a Texinfo �le, write the @include command at thebeginning of a line and follow it on the same line by the name of a �le to be included. Forexample:@include buffers.texiAn included �le should simply be a segment of text that you expect to be included as isinto the overall or outer Texinfo �le; it should not contain the standard beginning and endparts of a Texinfo �le. In particular, you should not start an included �le with a line saying`\input texinfo'; if you do, that phrase is inserted into the output �le as is. Likewise, youshould not end an included �le with an @bye command; nothing after @bye is formatted.In the past, you were required to write an @setfilename line at the beginning of anincluded �le, but no longer. Now, it does not matter whether you write such a line. If an@setfilename line exists in an included �le, it is ignored.Conventionally, an included �le begins with an @node line that is followed by an@chapter line. Each included �le is one chapter. This makes it easy to use the regularnode and menu creating and updating commands to create the node pointers and menuswithin the included �le. However, the simple Emacs node and menu creating and updatingcommands do not work with multiple Texinfo �les. Thus you cannot use these commandsto �ll in the `Next', `Previous', and `Up' pointers of the @node line that begins the included�le. Also, you cannot use the regular commands to create a master menu for the whole �le.Either you must insert the menus and the `Next', `Previous', and `Up' pointers by hand, oryou must use the GNU Emacs Texinfo mode command, texinfo-multiple-files-update,that is designed for @include �les.
E.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command.This command creates or updates `Next', `Previous', and `Up' pointers of included �les aswell as those in the outer or overall Texinfo �le, and it creates or updates a main menuin the outer �le. Depending whether you call it with optional arguments, the commandupdates only the pointers in the �rst @node line of the included �les or all of them:
M-x texinfo-multiple-files-updateCalled without any arguments:

� Create or update the `Next', `Previous', and `Up' pointers of the �rst @nodeline in each �le included in an outer or overall Texinfo �le.

184 Texinfo 3.12

� Create or update the `Top' level node pointers of the outer or overall �le.
� Create or update a main menu in the outer �le.

C-u M-x texinfo-multiple-files-updateCalled with C-u as a pre�x argument:
� Create or update pointers in the �rst @node line in each included �le.
� Create or update the `Top' level node pointers of the outer �le.
� Create and insert a master menu in the outer �le. The master menu ismade from all the menus in all the included �les.

C-u 8 M-x texinfo-multiple-files-updateCalled with a numeric pre�x argument, such as C-u 8:
� Create or update all the `Next', `Previous', and `Up' pointers of all theincluded �les.
� Create or update all the menus of all the included �les.
� Create or update the `Top' level node pointers of the outer or overall �le.
� And then create a master menu in the outer �le. This is similar to invokingtexinfo-master-menu with an argument when you are working with justone �le.

Note the use of the pre�x argument in interactive use: with a regular pre�x argument,just C-u, the texinfo-multiple-files-update command inserts a master menu; with anumeric pre�x argument, such as C-u 8, the command updates every pointer and menu in
all the �les and then inserts a master menu.
E.3 Include File Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo�le that lists included �les within it should contain nothing but the beginning and end partsof a Texinfo �le, and a number of @include commands listing the included �les. It shouldnot even include indices, which should be listed in an included �le of their own.Moreover, each of the included �les must contain exactly one highest level node (con-ventionally, @chapter or equivalent), and this node must be the �rst node in the included�le. Furthermore, each of these highest level nodes in each included �le must be at the samehierarchical level in the �le structure. Usually, each is an @chapter, an @appendix, or an@unnumbered node. Thus, normally, each included �le contains one, and only one, chapteror equivalent-level node.The outer �le should contain only one node, the `Top' node. It should not contain anynodes besides the single `Top' node. The texinfo-multiple-files-update command willnot process them.
E.4 Sample File with @include

Here is an example of a complete outer Texinfo �le with @include �les within it beforerunning texinfo-multiple-files-update, which would insert a main or master menu:

Appendix E: Include Files 185

\input texinfo @c -*-texinfo-*-@setfilename include-example.info@settitle Include Example
@setchapternewpage odd@titlepage@sp 12@center @titlefont{Include Example}@sp 2@center by Whom Ever
@page@vskip 0pt plus 1filllCopyright @copyright{} 1998 Free Software Foundation, Inc.@end titlepage
@ifinfo@node Top, First, , (dir)@top Master Menu@end ifinfo
@include foo.texinfo@include bar.texinfo@include concept-index.texinfo
@summarycontents@contents
@byeAn included �le, such as `foo.texinfo', might look like this:@node First, Second, , Top@chapter First Chapter
Contents of first chapter ...The full contents of `concept-index.texinfo' might be as simple as this:@node Concept Index, , Second, Top@unnumbered Concept Index
@printindex cpThe outer Texinfo source �le for The XEmacs Lisp Reference Manual is named`elisp.texi'. This outer �le contains a master menu with 417 entries and a list of 41@include �les.

E.5 Evolution of Include Files
When Info was �rst created, it was customary to create many small Info �les on onesubject. Each Info �le was formatted from its own Texinfo source �le. This custom meantthat Emacs did not need to make a large bu�er to hold the whole of a large Info �le whensomeone wanted information; instead, Emacs allocated just enough memory for the smallInfo �le that contained the particular information sought. This way, Emacs could avoidwasting memory.

186 Texinfo 3.12

References from one �le to another were made by referring to the �le name as wellas the node name. (See Section 7.5 [Referring to Other Info Files], page 57. Also, seeSection 8.3.4 [@xref with Four and Five Arguments], page 63.)Include �les were designed primarily as a way to create a single, large printed manualout of several smaller Info �les. In a printed manual, all the references were within the samedocument, so TEX could automatically determine the references' page numbers. The Infoformatting commands used include �les only for creating joint indices; each of the individualTexinfo �les had to be formatted for Info individually. (Each, therefore, required its own@setfilename line.)However, because large Info �les are now split automatically, it is no longer necessaryto keep them small.Nowadays, multiple Texinfo �les are used mostly for large documents, such as The
XEmacs Lisp Reference Manual, and for projects in which several di�erent people writedi�erent sections of a document simultaneously.In addition, the Info formatting commands have been extended to work with the@include command so as to create a single large Info �le that is split into smaller �lesif necessary. This means that you can write menus and cross references without naming thedi�erent Texinfo �les.

Appendix F: Page Headings 187

Appendix F Page Headings

Most printed manuals contain headings along the top of every page except the titleand copyright pages. Some manuals also contain footings. (Headings and footings have nomeaning to Info, which is not paginated.)Texinfo provides standard page heading formats for manuals that are printed on oneside of each sheet of paper and for manuals that are printed on both sides of the paper.Typically, you will use these formats, but you can specify your own format if you wish.In addition, you can specify whether chapters should begin on a new page, or merelycontinue the same page as the previous chapter; and if chapters begin on new pages, youcan specify whether they must be odd-numbered pages.By convention, a book is printed on both sides of each sheet of paper. When you opena book, the right-hand page is odd-numbered, and chapters begin on right-hand pages|apreceding left-hand page is left blank if necessary. Reports, however, are often printed onjust one side of paper, and chapters begin on a fresh page immediately following the end ofthe preceding chapter. In short or informal reports, chapters often do not begin on a newpage at all, but are separated from the preceding text by a small amount of whitespace.The @setchapternewpage command controls whether chapters begin on new pages,and whether one of the standard heading formats is used. In addition, Texinfo has severalheading and footing commands that you can use to generate your own heading and footingformats.In Texinfo, headings and footings are single lines at the tops and bottoms of pages;you cannot create multiline headings or footings. Each header or footer line is divided intothree parts: a left part, a middle part, and a right part. Any part, or a whole line, maybe left blank. Text for the left part of a header or footer line is set
ushleft; text for themiddle part is centered; and, text for the right part is set
ushright.
F.1 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side ofeach sheet of paper, and the other for manuals printed on both sides of the paper.By default, nothing is speci�ed for the footing of a Texinfo �le, so the footing remainsblank.The standard format for single-sided printing consists of a header line in which the left-hand part contains the name of the chapter, the central part is blank, and the right-handpart contains the page number.A single-sided page looks like this:_______________________| || chapter page number || || Start of text ... || ... || |

188 Texinfo 3.12

The standard format for two-sided printing depends on whether the page number iseven or odd. By convention, even-numbered pages are on the left- and odd-numbered pagesare on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,widths are correct, but during double-sided printing, it is wise to check that pages will bindproperly|sometimes a printer will produce output in which the even-numbered pages havea larger right-hand margin than the odd-numbered pages.)In the standard double-sided format, the left part of the left-hand (even-numbered)page contains the page number, the central part is blank, and the right part contains thetitle (speci�ed by the @settitle command). The left part of the right-hand (odd-numbered)page contains the name of the chapter, the central part is blank, and the right part containsthe page number.Two pages, side by side as in an open book, look like this:_______________________ _______________________| | | || page number title | | chapter page number || | | || Start of text ... | | More text ... || ... | | ... || | | |
The chapter name is preceded by the word \Chapter", the chapter number and a colon.This makes it easier to keep track of where you are in the manual.
F.2 Specifying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo �le until it reachesthe @end titlepage command. Thus, the title and copyright pages are not numbered.The @end titlepage command causes TEX to begin to generate page headings accordingto a standard format speci�ed by the @setchapternewpage command that precedes the@titlepage section.There are four possibilities:
No @setchapternewpage commandCause TEX to specify the single-sided heading format, with chapters on newpages. This is the same as @setchapternewpage on.
@setchapternewpage onSpecify the single-sided heading format, with chapters on new pages.
@setchapternewpage offCause TEX to start a new chapter on the same page as the last page of thepreceding chapter, after skipping some vertical whitespace. Also cause TEXto typeset for single-sided printing. (You can override the headers format withthe @headings double command; see Section 3.4.6 [The @headings Command],page 34.)
@setchapternewpage oddSpecify the double-sided heading format, with chapters on new pages.
Texinfo lacks an @setchapternewpage even command.

Appendix F: Page Headings 189

F.3 How to Make Your Own Headings
You can use the standard headings provided with Texinfo or specify your own. Bydefault, Texinfo has no footers, so if you specify them, the available page size for the maintext will be slightly reduced.Texinfo provides six commands for specifying headings and footings. The@everyheading command and @everyfooting command generate page headers andfooters that are the same for both even- and odd-numbered pages. The @evenheadingcommand and @evenfooting command generate headers and footers for even-numbered(left-hand) pages; and the @oddheading command and @oddfooting command generateheaders and footers for odd-numbered (right-hand) pages.Write custom heading speci�cations in the Texinfo �le immediately after the @endtitlepage command. Enclose your speci�cations between @iftex and @end iftex com-mands since the texinfo-format-buffer command may not recognize them. Also, youmust cancel the prede�ned heading commands with the @headings off command beforede�ning your own speci�cations.Here is how to tell TEX to place the chapter name at the left, the page number in thecenter, and the date at the right of every header for both even- and odd-numbered pages:
@iftex@headings off@everyheading @thischapter @| @thispage @| @today{}@end iftexYou need to divide the left part from the central part and the central part from the rightpart by inserting `@|' between parts. Otherwise, the speci�cation command will not be ableto tell where the text for one part ends and the next part begins.Each part can contain text or @-commands. The text is printed as if the part werewithin an ordinary paragraph in the body of the page. The @-commands replace themselveswith the page number, date, chapter name, or whatever.Here are the six heading and footing commands:

@everyheading left @| center @| right@everyfooting left @| center @| rightThe `every' commands specify the format for both even- and odd-numberedpages. These commands are for documents that are printed on one side of eachsheet of paper, or for documents in which you want symmetrical headers orfooters.
@evenheading left @| center @| right@oddheading left @| center @| right@evenfooting left @| center @| right@oddfooting left @| center @| rightThe `even' and `odd' commands specify the format for even-numbered pagesand odd-numbered pages. These commands are for books and manuals thatare printed on both sides of each sheet of paper.

Use the `@this...' series of @-commands to provide the names of chapters and sectionsand the page number. You can use the `@this...' commands in the left, center, or right

190 Texinfo 3.12

portions of headers and footers, or anywhere else in a Texinfo �le so long as they are between@iftex and @end iftex commands.Here are the `@this...' commands:
@thispage Expands to the current page number.
@thischapternameExpands to the name of the current chapter.
@thischapterExpands to the number and name of the current chapter, in the format `Chapter1: Title'.
@thistitleExpands to the name of the document, as speci�ed by the @settitle command.
@thisfile For @include �les only: expands to the name of the current @include �le. Ifthe current Texinfo source �le is not an @include �le, this command has noe�ect. This command does not provide the name of the current Texinfo source�le unless it is an @include �le. (See Appendix E [Include Files], page 183, formore information about @include �les.)
You can also use the @today{} command, which expands to the current date, in `1 Jan1900' format.Other @-commands and text are printed in a header or footer just as if they were in thebody of a page. It is useful to incorporate text, particularly when you are writing drafts:@iftex@headings off@everyheading @emph{Draft!} @| @thispage @| @thischapter@everyfooting @| @| Version: 0.27: @today{}@end iftexBeware of overlong titles: they may overlap another part of the header or footer andblot it out.

Appendix G: Formatting Mistakes 191

Appendix G Formatting Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistakeyou can make with Texinfo: you can make mistakes with @-commands, and you can makemistakes with the structure of the nodes and chapters.
Emacs has two tools for catching the @-command mistakes and two for catching struc-turing mistakes.
For �nding problems with @-commands, you can run TEX or a region formatting com-mand on the region that has a problem; indeed, you can run these commands on each regionas you write it.
For �nding problems with the structure of nodes and chapters, you can use C-c C-

s (texinfo-show-structure) and the related occur command and you can use the M-x
Info-validate command.

The makeinfo program does an excellent job of catching errors and reporting them|farbetter than texinfo-format-region or texinfo-format-buffer. In addition, the variousfunctions for automatically creating and updating node pointers and menus remove manyopportunities for human error.
If you can, use the updating commands to create and insert pointers and menus. Theseprevent many errors. Then use makeinfo (or its Texinfo mode manifestations, makeinfo-region and makeinfo-buffer) to format your �le and check for other errors. This is thebest way to work with Texinfo. But if you cannot use makeinfo, or your problem is verypuzzling, then you may want to use the tools described in this appendix.

G.1 Catching Errors with Info Formatting
After you have written part of a Texinfo �le, you can use the texinfo-format-regionor the makeinfo-region command to see whether the region formats properly.
Most likely, however, you are reading this section because for some reason you cannotuse the makeinfo-region command; therefore, the rest of this section presumes that youare using texinfo-format-region.
If you have made a mistake with an @-command, texinfo-format-region will stopprocessing at or after the error and display an error message. To see where in the bu�erthe error occurred, switch to the `*Info Region*' bu�er; the cursor will be in a positionthat is after the location of the error. Also, the text will not be formatted after the placewhere the error occurred (or more precisely, where it was detected).
For example, if you accidentally end a menu with the command @end menus with an`s' on the end, instead of with @end menu, you will see an error message that says:
@end menus is not handled by texinfo

The cursor will stop at the point in the bu�er where the error occurs, or not long after it.The bu�er will look like this:

192 Texinfo 3.12

---------- Buffer: *Info Region* ----------* Menu:
* Using texinfo-show-structure:: How to use`texinfo-show-structure'to catch mistakes.* Running Info-Validate:: How to check forunreferenced nodes.@end menus?---------- Buffer: *Info Region* ----------The texinfo-format-region command sometimes provides slightly odd error mes-sages. For example, the following cross reference fails to format:
(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays amessage that says `Unbalanced parentheses' rather than `Unbalanced braces'. This isbecause the formatting command looks for mismatches between braces as if they wereparentheses.
Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-lowing, the closing brace is swapped with the closing parenthesis:
(@xref{Catching Mistakes), for more info.}

Formatting produces:
(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should havelooked like this:
(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f hRETi (Info-follow-reference), you will generate an error message that says:
No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the �rst cross reference in thisnode and if you type a hRETi immediately after typing the Info f command, Info will attemptto go to the referenced node. If you type f catch hTABi hRETi , Info will complete the nodename of the correctly written example and take you to the `Catching Mistakes' node. (Ifyou try this, you can return from the `Catching Mistakes' node by typing l (Info-last).)
G.2 Catching Errors with TEX Formatting

You can also catch mistakes when you format a �le with TEX.
Usually, you will want to do this after you have run texinfo-format-buffer (or,better, makeinfo-buffer) on the same �le, because texinfo-format-buffer sometimesdisplays error messages that make more sense than TEX. (See Section G.1 [Debugging withInfo], page 191, for more information.)
For example, TEX was run on a Texinfo �le, part of which is shown here:

Appendix G: Formatting Mistakes 193

---------- Buffer: texinfo.texi ----------name of the Texinfo file as an extension. The@samp{??} are `wildcards' that cause the shell tosubstitute all the raw index files. (@xref{sortingindices, for more information about sortingindices.)@refill---------- Buffer: texinfo.texi ----------(The cross reference lacks a closing brace.) TEX produced the following output, after whichit stopped:
---------- Buffer: *tex-shell* ----------Runaway argument?{sorting indices, for more information about sortingindices.) @refill @ETC.! Paragraph ended before @xref was complete.<to be read again> @parl.27
?---------- Buffer: *tex-shell* ----------In this case, TEX produced an accurate and understandable error message:
Paragraph ended before @xref was complete.`@par' is an internal TEX command of no relevance to Texinfo. `l.27' means that TEXdetected the problem on line 27 of the Texinfo �le. The `?' is the prompt TEX uses in thiscircumstance.Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sher-lock Holmes to discover what went wrong.In any case, if you run into a problem like this, you can do one of three things.1. You can tell TEX to continue running and ignore just this error by typing hRETi at the`?' prompt.2. You can tell TEX to continue running and to ignore all errors as best it can by typing

r hRETi at the `?' prompt.This is often the best thing to do. However, beware: the one error may produce acascade of additional error messages as its consequences are felt through the rest of the�le. To stop TEX when it is producing such an avalanche of error messages, type C-c(or C-c C-c, if you are running a shell inside Emacs).3. You can tell TEX to stop this run by typing x hRETi at the `?' prompt.
Please note that if you are running TEX inside Emacs, you need to switch to the shellbu�er and line at which TEX o�ers the `?' prompt.Sometimes TEX will format a �le without producing error messages even though thereis a problem. This usually occurs if a command is not ended but TEX is able to continueprocessing anyhow. For example, if you fail to end an itemized list with the @end itemizecommand, TEX will write a DVI �le that you can print out. The only error message thatTEX will give you is the somewhat mysterious comment that

194 Texinfo 3.12

(@end occurred inside a group at level 1)However, if you print the DVI �le, you will �nd that the text of the �le that follows theitemized list is entirely indented as if it were part of the last item in the itemized list. Theerror message is the way TEX says that it expected to �nd an @end command somewherein the �le; but that it could not determine where it was needed.Another source of notoriously hard-to-�nd errors is a missing @end group command. Ifyou ever are stumped by incomprehensible errors, look for a missing @end group command�rst.If the Texinfo �le lacks header lines, TEX may stop in the beginning of its run anddisplay output that looks like the following. The `*' indicates that TEX is waiting for input.
This is TeX, Version 3.14159 (Web2c 7.0)(test.texinfo [1])*In this case, simply type \end hRETi after the asterisk. Then write the header lines in theTexinfo �le and run the TEX command again. (Note the use of the backslash, `\'. TEX uses`\' instead of `@'; and in this circumstance, you are working directly with TEX, not withTexinfo.)

G.3 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections ofa Texinfo �le. This is especially true if you are revising or adding to a Texinfo �le thatsomeone else has written.In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists allthe lines that begin with the @-commands that specify the structure: @chapter, @section,@appendix, and so on. With an argument (C-u as pre�x argument, if interactive), thecommand also shows the @node lines. The texinfo-show-structure command is boundto C-c C-s in Texinfo mode, by default.The lines are displayed in a bu�er called the `*Occur*' bu�er, indented by hierarchi-cal level. For example, here is a part of what was produced by running texinfo-show-structure on this manual:
Lines matching "^@\\(chapter \\|sect\\|subs\\|subh\\|unnum\\|major\\|chapheading \\|heading \\|appendix\\)"in buffer texinfo.texi....4177:@chapter Nodes4198: @heading Two Paths4231: @section Node and Menu Illustration4337: @section The @code{@@node} Command4393: @subheading Choosing Node and Pointer Names4417: @subsection How to Write an @code{@@node} Line4469: @subsection @code{@@node} Line Tips...This says that lines 4337, 4393, and 4417 of `texinfo.texi' begin with the @section,@subheading, and @subsection commands respectively. If you move your cursor into the

Appendix G: Formatting Mistakes 195

`*Occur*' window, you can position the cursor over one of the lines and use the C-c C-
c command (occur-mode-goto-occurrence), to jump to the corresponding spot in theTexinfo �le. See section \Using Occur" in XEmacs User's Manual, for more informationabout occur-mode-goto-occurrence.

The �rst line in the `*Occur*' window describes the regular expression speci�edby texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-structure looks for. See section \Using Regular Expressions" in XEmacs User's Manual,for more information.
When you invoke the texinfo-show-structure command, Emacs will display thestructure of the whole bu�er. If you want to see the structure of just a part of the bu�er,of one chapter, for example, use the C-x n n (narrow-to-region) command to mark theregion. (See section \Narrowing" in XEmacs User's Manual.) This is how the example usedabove was generated. (To see the whole bu�er again, use C-x n w (widen).)
If you call texinfo-show-structure with a pre�x argument by typing C-u C-c C-s, itwill list lines beginning with @node as well as the lines beginning with the @-sign commandsfor @chapter, @section, and the like.
You can remind yourself of the structure of a Texinfo �le by looking at the list in the`*Occur*' window; and if you have mis-named a node or left out a section, you can correctthe mistake.

G.4 Using occur

Sometimes the texinfo-show-structure command produces too much information.Perhaps you want to remind yourself of the overall structure of a Texinfo �le, and areoverwhelmed by the detailed list produced by texinfo-show-structure. In this case, youcan use the occur command directly. To do this, type
M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you wantto match. (See section \Regular Expressions" in XEmacs User's Manual.) The occurcommand works from the current location of the cursor in the bu�er to the end of thebu�er. If you want to run occur on the whole bu�er, place the cursor at the beginning ofthe bu�er.
For example, to see all the lines that contain the word `@chapter' in them, just type`@chapter'. This will produce a list of the chapters. It will also list all the sentences with`@chapter' in the middle of the line.
If you want to see only those lines that start with the word `@chapter', type `^@chapter'when prompted by occur. If you want to see all the lines that end with a word or phrase,end the last word with a `$'; for example, `catching mistakes$'. This can be helpful whenyou want to see all the nodes that are part of the same chapter or section and thereforehave the same `Up' pointer.
See section \Using Occur" in XEmacs User's Manual, for more information.

196 Texinfo 3.12

G.5 Finding Badly Referenced Nodes
You can use the Info-validate command to check whether any of the `Next', `Previ-ous', `Up' or other node pointers fail to point to a node. This command checks that everynode pointer points to an existing node. The Info-validate command works only on Info�les, not on Texinfo �les.The makeinfo program validates pointers automatically, so you do not need to use theInfo-validate command if you are using makeinfo. You only may need to use Info-validate if you are unable to run makeinfo and instead must create an Info �le usingtexinfo-format-region or texinfo-format-buffer, or if you write an Info �le fromscratch.

G.5.1 Running Info-validate

To use Info-validate, visit the Info �le you wish to check and type:M-x Info-validate(Note that the Info-validate command requires an upper case `I'. You may also need tocreate a tag table before running Info-validate. See Section G.5.3 [Tagifying], page 197.)If your �le is valid, you will receive a message that says \File appears valid". However,if you have a pointer that does not point to a node, error messages will be displayed in abu�er called `*problems in info file*'.For example, Info-validate was run on a test �le that contained only the �rst nodeof this manual. One of the messages said:In node "Overview", invalid Next: Texinfo ModeThis meant that the node called `Overview' had a `Next' pointer that did not point toanything (which was true in this case, since the test �le had only one node in it).Now suppose we add a node named `Texinfo Mode' to our test case but we do notspecify a `Previous' for this node. Then we will get the following error message:In node "Texinfo Mode", should have Previous: OverviewThis is because every `Next' pointer should be matched by a `Previous' (in the node wherethe `Next' points) which points back.
Info-validate also checks that all menu entries and cross references point to actualnodes.Note that Info-validate requires a tag table and does not work with �les that havebeen split. (The texinfo-format-buffer command automatically splits large �les.) Inorder to use Info-validate on a large �le, you must run texinfo-format-buffer withan argument so that it does not split the Info �le; and you must create a tag table for theunsplit �le.

G.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info �le that has a tag table. Thecommand will not work on the indirect sub�les that are generated when a master �le issplit. If you have a large �le (longer than 70,000 bytes or so), you need to run the texinfo-format-buffer or makeinfo-buffer command in such a way that it does not create indirect

Appendix G: Formatting Mistakes 197

sub�les. You will also need to create a tag table for the Info �le. After you have done this,you can run Info-validate and look for badly referenced nodes.The �rst step is to create an unsplit Info �le. To prevent texinfo-format-bufferfrom splitting a Texinfo �le into smaller Info �les, give a pre�x to the M-x texinfo-format-
buffer command:C-u M-x texinfo-format-bufferor elseC-u C-c C-e C-bWhen you do this, Texinfo will not split the �le and will not create a tag table for it.
G.5.3 Tagifying a File

After creating an unsplit Info �le, you must create a tag table for it. Visit the Info �leyou wish to tagify and type:M-x Info-tagify(Note the upper case `I' in Info-tagify.) This creates an Info �le with a tag table thatyou can validate.The third step is to validate the Info �le:M-x Info-validate(Note the upper case `I' in Info-validate.) In brief, the steps are:C-u M-x texinfo-format-bufferM-x Info-tagifyM-x Info-validateAfter you have validated the node structure, you can rerun texinfo-format-bufferin the normal way so it will construct a tag table and split the �le automatically, or youcan make the tag table and split the �le manually.
G.5.4 Splitting a File Manually

You should split a large �le or else let the texinfo-format-buffer or makeinfo-buffer command do it for you automatically. (Generally you will let one of the formattingcommands do this job for you. See Chapter 20 [Create an Info File], page 143.)The split-o� �les are called the indirect sub�les.Info �les are split to save memory. With smaller �les, Emacs does not have make sucha large bu�er to hold the information.If an Info �le has more than 30 nodes, you should also make a tag table for it. SeeSection G.5.1 [Using Info-validate], page 196, for information about creating a tag table.(Again, tag tables are usually created automatically by the formatting command; you onlyneed to create a tag table yourself if you are doing the job manually. Most likely, you willdo this for a large, unsplit �le on which you have run Info-validate.)Visit the Info �le you wish to tagify and split and type the two commands:M-x Info-tagifyM-x Info-split(Note that the `I' in `Info' is upper case.)

198 Texinfo 3.12

When you use the Info-split command, the bu�er is modi�ed into a (small) Info �lewhich lists the indirect sub�les. This �le should be saved in place of the original visited �le.The indirect sub�les are written in the same directory the original �le is in, with namesgenerated by appending `-' and a number to the original �le name.The primary �le still functions as an Info �le, but it contains just the tag table and adirectory of sub�les.

Appendix H: Re�lling Paragraphs 199

Appendix H Re�lling Paragraphs

The @refill command re�lls and, optionally, indents the �rst line of a paragraph.1The @refill command is no longer important, but we describe it here because you onceneeded it. You will see it in many old Texinfo �les.Without re�lling, paragraphs containing long @-constructs may look bad after format-ting because the formatter removes @-commands and shortens some lines more than oth-ers. In the past, neither the texinfo-format-region command nor the texinfo-format-buffer command re�lled paragraphs automatically. The @refill command had to bewritten at the end of every paragraph to cause these formatters to �ll them. (Both TEXand makeinfo have always re�lled paragraphs automatically.) Now, all the Info formattersautomatically �ll and indent those paragraphs that need to be �lled and indented.The @refill command causes texinfo-format-region and texinfo-format-bufferto re�ll a paragraph in the Info �le after all the other processing has been done. For thisreason, you can not use @refill with a paragraph containing either @* or @w{ ... } sincethe re�lling action will override those two commands.The texinfo-format-region and texinfo-format-buffer commands now automat-ically append @refill to the end of each paragraph that should be �lled. They do notappend @refill to the ends of paragraphs that contain @* or @w{ ...} and therefore donot re�ll or indent them.

1 Perhaps the command should have been called the@refillandindent command, but @refill is shorter
and the name was chosen before indenting was possible.

200 Texinfo 3.12

Appendix I: @-Command Syntax 201

Appendix I @-Command Syntax

The character `@' is used to start special Texinfo commands. (It has the same meaningthat `\' has in plain TEX.) Texinfo has four types of @-command:
1. Non-alphabetic commands.These commands consist of an @ followed by a punctuation mark or other char-acter that is not part of the alphabet. Non-alphabetic commands are almostalways part of the text within a paragraph, and never take any argument. Thetwo characters (@ and the other one) are complete in themselves; none is fol-lowed by braces. The non-alphabetic commands are: @., @:, @*, @SPACE, @TAB,@NL, @@, @{, and @}.
2. Alphabetic commands that do not require arguments.These commands start with @ followed by a word followed by left- and right-hand braces. These commands insert special symbols in the document; theydo not require arguments. For example, @dots{}) `...', @equiv{}) `� ',@TeX{}) `TEX', and @bullet{}) `�'.
3. Alphabetic commands that require arguments within braces.These commands start with @ followed by a letter or a word, followed by an argu-ment within braces. For example, the command @dfn indicates the introductoryor de�ning use of a term; it is used as follows: `In Texinfo, @@-commands are@dfn{mark-up} commands.'
4. Alphabetic commands that occupy an entire line.These commands occupy an entire line. The line starts with @, followed bythe name of the command (a word); for example, @center or @cindex. If noargument is needed, the word is followed by the end of the line. If there is anargument, it is separated from the command name by a space. Braces are notused.

Thus, the alphabetic commands fall into classes that have di�erent argument syntaxes.You cannot tell to which class a command belongs by the appearance of its name, but youcan tell by the command's meaning: if the command stands for a glyph, it is in class 2 anddoes not require an argument; if it makes sense to use the command together with othertext as part of a paragraph, the command is in class 3 and must be followed by an argumentin braces; otherwise, it is in class 4 and uses the rest of the line as its argument.The purpose of having a di�erent syntax for commands of classes 3 and 4 is to makeTexinfo �les easier to read, and also to help the GNU Emacs paragraph and �lling commandswork properly. There is only one exception to this rule: the command @refill, which isalways used at the end of a paragraph immediately following the �nal period or otherpunctuation character. @refill takes no argument and does not require braces. @refillnever confuses the Emacs paragraph commands because it cannot appear at the beginningof a line.

202 Texinfo 3.12

Appendix J: How to Obtain TEX 203

Appendix J How to Obtain T EX

TEX is freely redistributable. You can obtain TEX for Unix systems via anonymousftp or on physical media. The core material consists of the Web2c TEX distribution(http://tug.org/web2c).Instructions for retrieval by anonymous ftp and information on other available distri-butions:ftp://tug.org/tex/unixtex.ftphttp://tug.org/unixtex.ftpThe Free Software Foundation provides a core distribution on its Source Code CD-ROM suitable for printing Texinfo manuals; the University of Washington maintains andsupports a tape distribution; the TEX Users Group co-sponsors a complete CD-ROM TEXdistribution.
� For the FSF Source Code CD-ROM, please contact:Free Software Foundation, Inc.59 Temple Place Suite 330Boston, MA 02111-1307USATelephone: +1-617-542-5942Fax: (including Japan) +1-617-542-2652Free Dial Fax (in Japan):0031-13-2473 (KDD)0066-3382-0158 (IDC)Electronic mail: gnu@gnu.org� To order a complete distribution on CD-ROM, please see http://tug.org/tex-live.html.(This distribution is also available by FTP; see the URL's above.)
� To order a full distribution from the University of Washington on either a 1/4 in 4-trackQIC-24 cartridge or a 4 mm DAT cartridge, send $210 to:Pierre A. MacKayDenny Hall, Mail Stop DH-10University of WashingtonSeattle, WA 98195USATelephone: +1-206-543-2268Electronic mail: mackay@cs.washington.eduPlease make checks payable to the University of Washington. Checks must be in U.S.dollars, drawn on a U.S. bank. Overseas sites: please add to the base cost, if desired,$20.00 for shipment via air parcel post, or $30.00 for shipment via courier.

Many other TEX distributions are available; see http://tug.org/.

http://tug.org/web2c
ftp://tug.org/tex/unixtex.ftp
http://tug.org/unixtex.ftp
http://tug.org/tex-live.html
http://tug.org/

204 Texinfo 3.12

Command and Variable Index 205

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, andseveral variables. To make the list easier to use, the commands are listed without theirpreceding `@'.
!
! (end of sentence). 100

'
' . 101

(
(newline) . 100
(space) . 100
(tab) . 100

*
* (force line break) . 109

,
, . 101

-
- . 110

.

. (end of sentence). 100

:
: (suppress widening) . 99

=
= . 101

?
? (end of sentence). 100

@
@(single `@') . 99

`̀
. 101

{
{ (single {̀ ') . 99

}
} (single }̀ ') . 99

~
~ . 101

"
" . 101

^
^ . 101

A
aa . 102
AA. 102
ae . 102
AE. 102
afourpaper . 141
appendix . 45
appendixsec . 46
appendixsection . 46
appendixsubsec . 47
appendixsubsubsec . 47
apply . 123
asis . 88
author . 32

B
b (bold font) . 76
buffer-end . 114
bullet . 102
bye. 39, 41

206 Texinfo 3.12

C
c (comment) . 7
cartouche . 84
center . 32
centerchap . 45
chapheading . 45
chapter . 44
cindex . 94
cite . 74
clear . 129
code. 70
columnfractions . 90
comment. 7
contents . 40
copyright . 33, 103
cropmarks . 142

D
defcodeindex . 96
defcv . 121
deffn . 115
deffnx . 115
defindex . 96
definfoenclose . 76
defivar . 121
defmac. 116
defmethod . 122
defop . 121
defopt . 117
defspec . 116
deftp . 122
deftypefn . 118
deftypefun . 119
deftypevar . 120
deftypevr . 119
defun . 116
defvar . 117
defvr . 117
dfn . 74
dircategory . 153
direntry . 153
display . 83
dmn. 101
dotaccent . 101
dotless . 102
dots . 102

E
email . 74
emph. 75
end. 79, 85
end titlepage . 34
enumerate . 87
evenfooting . 189
evenheading . 189
everyfooting . 189
everyheading . 189
example. 80
exclamdown. 102
exdent . 83

F
file . 73
filll . 33
finalout . 141
findex . 94
flushleft . 83
flushright . 83
foobar . 114, 118, 119
footnote . 125
footnotestyle . 126
format . 83
forward-word . 113
ftable . 89

G
group . 111

H
H. 101
heading . 46
headings . 34
html . 128
hyphenation . 110

Command and Variable Index 207

I
i (italic font) . 76
ifclear . 129
ifhtml . 127, 128
ifinfo . 127
ifnothtml . 127
ifnotinfo . 127
ifnottex . 127
ifset . 128
iftex . 127
ignore . 8
image. 107
include . 183
Info-validate . 196
inforef . 67
input (TEX command) . 8
isearch-backward . 115
isearch-forward . 115
item . 86, 88, 90
itemize . 85
itemx . 89

K
kbd . 71
kbdinputstyle . 71
key . 71
kindex . 94

L
l . 102
L . 102
lisp . 82
lowersections . 48

M
macro. 133
mag(TEX command) . 142
majorheading . 45
makeinfo-buffer . 146
makeinfo-kill-job . 146
makeinfo-recenter-output-buffer 146
makeinfo-region . 146
math. 103
menu. 55
minus. 103

multitable . 90

N
need. 112
next-error . 146
noindent . 81

O
o . 102
O. 102
occur . 195
occur-mode-goto-occurrence 16
oddfooting . 189
oddheading . 189
oe . 102
OE. 102

P
page. 111
paragraphindent . 30
pindex . 95
pounds. 103
printindex . 39
pxref . 66

Q
questiondown . 102
quotation . 80

R
r (Roman font) . 76
raisesections . 48
ref . 65
refill . 199
ringaccent . 101

208 Texinfo 3.12

S
samp. 72
sc (small caps font) . 75
section . 45
set . 129
setchapternewpage . 29
setfilename . 27
settitle . 28
shortcontents . 40
shorttitlepage . 31
smallbook . 141
smallexample . 82
smalllisp . 82
sp (line spacing) . 111
sp (titlepage line spacing) . 32
ss . 102
strong . 75
subheading . 47
subsection . 46
subsubheading . 47
subsubsection . 47
subtitle . 32
summarycontents . 40
syncodeindex . 95
synindex . 96

T
t (typewriter font) . 76
table . 88
tex . 128
tex (command) . 103
texinfo-all-menus-update 18
texinfo-every-node-update 18
texinfo-format-buffer 21, 147
texinfo-format-region 20, 147
texinfo-indent-menu-description 20
texinfo-insert-@code . 14
texinfo-insert-@dfn . 14
texinfo-insert-@end . 14
texinfo-insert-@example 15
texinfo-insert-@item . 14
texinfo-insert-@kbd . 14
texinfo-insert-@node . 14
texinfo-insert-@noindent 14
texinfo-insert-@samp . 14
texinfo-insert-@table . 14
texinfo-insert-@var . 14

texinfo-insert-braces . 15
texinfo-insert-node-lines 19
texinfo-make-menu . 18
texinfo-master-menu . 17
texinfo-multiple-files-update 183
texinfo-multiple-files-update (in brief) 20
texinfo-sequential-node-update 20
texinfo-show-structure 16, 194
texinfo-start-menu-description 15
texinfo-tex-buffer . 21
texinfo-tex-print . 22
texinfo-tex-region . 21
texinfo-update-node . 18
thischapter . 190
thischaptername . 190
thisfile . 190
thispage . 190
thistitle . 190
tieaccent . 101
tindex . 95
title . 32
titlefont . 32
titlepage . 31
today . 190
top (@-command) . 53

U
u . 101
ubaraccent . 101
udotaccent . 101
unmacro. 133
unnumbered. 45
unnumberedsec. 46
unnumberedsubsec. 47
unnumberedsubsubsec. 47
up-list . 15
uref . 67
url . 74

V
v . 101
value . 130
var . 73
vindex . 94
vskip . 33
vtable . 89

Command and Variable Index 209

W
w (prevent line break) . 110

X
xref . 61

210 Texinfo 3.12

Concept Index 211

Concept Index

!
<. 102

(
(dir) as Up node of Top node 53

-
--delete . 154
--dir-file= name . 154
--entry= text . 154
--error-limit= limit . 144
--fill-column= width . 144
--footnote-style= style . 144
--force . 144
--help . 144, 154
--info-dir= dir . 154
--info-file= �le . 154
--item= text . 154
--no-headers . 144
--no-number-footnotes . 145
--no-pointer-validate . 144
--no-split . 144
--no-validate . 144
--no-warn . 144
--output= �le . 145
--paragraph-indent= indent 145
--quiet . 154
--reference-limit= limit 145
--remove . 154
--section= sec . 154
--verbose . 145
--version . 145, 154
-D var . 143
-I dir . 144
-o �le . 145
-P dir . 145

.

.cshrc initialization �le . 139

.pro�le initialization �le . 139

?
> . 102

@
@-command in nodename. 52
@-command list . 155
@-command syntax. 201
@-commands. 6
@include �le sample . 184
@menuparts . 56
@nodeline writing . 51

A
A4 paper, printing on . 141
�a . 102
�A . 102
Abbreviations for keys . 72
Accents, inserting . 101
Acute accent . 101
Adding a new info �le . 151
� . 102
� . 102
Alphabetical @-command list 155
Another Info directory . 152
Apostrophe in nodename. 53
Arguments, repeated and optional 114
Aspect ratio of images . 107
Automatic pointer creation with makeinfo 54
Automatically insert nodes, menus 16

B
Backslash, and macros. 133
Badly referenced nodes. 196
Batch formatting for Info . 147
Beginning a Texinfo �le . 25
Beginning line of a Texinfo �le 27
Berry, Karl . 11
Big points . 107
Black rectangle in hardcopy 140
Blank lines . 111
Body of a macro . 133
Book characteristics, printed 5
Book, printing small . 141
Box with rounded corners . 84
Braces and argument syntax 201
Braces, inserting . 99
Braces, when to use. 6
Breaks in a line . 109
Breve accent . 101
Bu�er formatting and printing 21
Bullets, inserting . 102

212 Texinfo 3.12

C
Case in nodename. 53
Catching errors with Info formatting 191
Catching errors with T EX formatting 192
Catching mistakes . 191
Cedilla accent . 101
Centimeters . 107
Chapter structuring . 43
Characteristics, printed books or manuals 5
Chassell, Robert J.. 11
Check accent. 101
Checking for badly referenced nodes. 196
Ciceros . 107
Circum
ex accent . 101
code, arg to @kbdinputstyle 71
colon last in INFOPATH. 152
Column widths, de�ning for multitables 90
Combining indices . 95
Comma in nodename. 53
Command de�nitions . 123
Commands to insert special characters 99
Commands using raw HTML 128
Commands using raw TEX 128
Commands, inserting them 14
Comments . 7
Compile command for formatting 138
Conditionally visible text . 127
Conditions for copying Texinfo 1
Contents, Table of . 40
Contents-like outline of �le structure 15
Conventions for writing de�nitions 123
Conventions, syntactic . 7
Copying conditions . 1
Copying permissions . 181
Copying software . 37
Copyright page . 33
Correcting mistakes . 191
Create nodes, menus automatically. 16
Creating an Info �le . 143
Creating an unsplit �le . 196
Creating index entries . 94
Creating indices . 93
Creating pointers with makeinfo 54
Cropmarks for printing . 142
Cross reference parts. 60
Cross references. 59
Cross references using@inforef 67
Cross references using@pxref. 66
Cross references using@ref. 65
Cross references using@xref. 61
Customized highlighting . 76
Customizing of TEX for Texinfo 139

D
Debugging the Texinfo structure 191
Debugging with Info formatting 191
Debugging with TEX formatting 192
De�ning indexing entries . 94
De�ning macros . 133
De�ning new indices . 96
De�ning new Texinfo commands 133
De�nition commands . 113
De�nition conventions . 123
De�nition template . 113
De�nitions grouped together 115
Description for menu, start 15
Didôt points . 107
Di�erent cross reference commands. 59
Dimension formatting . 101
Dimensions and image sizes. 107
`dir ' directory for Info installation 151
`dir ' �le listing . 151
`dir ', created by install-info 154
Display formatting . 83
distinct , arg to @kbdinputstyle 71
Distorting images . 107
Distribution . 37
Dot accent . 101
Dotless i, j . 102
Dots, inserting . 102
Double-colon menu entries. 56
DVI �le . 135

E
Ellipsis, inserting . 102
Emacs. 13
Emacs shell, format, print from 137
Emphasizing text . 75
Emphasizing text, font for . 75
enable . 120
Enclosure command for Info 76
`End' node footnote style . 125
End of header line . 30
End titlepage starts headings 34
Ending a Sentence. 100
Ending a Texinfo �le . 39
Entries for an index . 94
Entries, making index . 93
Enumeration . 87
epsf.tex . 107
epsf.tex , installing . 139
Equivalence, indicating it . 106
Error message, indicating it 105
Errors, parsing . 146

Concept Index 213

Es-zet . 102
European A4 paper . 141
Evaluation glyph . 104
Example for a small book . 82
Example menu . 57
example, arg to @kbdinputstyle 71
Examples, formatting them 80
Expansion, indicating it . 104

F
File beginning . 25
File ending . 39
File section structure, showing it 15
Filling paragraphs . 199
Final output . 140
Finding badly referenced nodes. 196
Fine-tuning, and hyphenation 110
First line of a Texinfo �le . 27
First node . 53
Floating accents, inserting 101
Fonts for indices . 96
Fonts for printing, not for Info 76
Footings . 187
Footnotes . 125
Format a dimension . 101
Format and print hardcopy 135
Format and print in Texinfo mode 137
Format with the compile command 138
Format, print from Emacs shell 137
Formats for images . 107
Formatting a �le for Info . 143
Formatting commands . 6
Formatting examples . 80
Formatting for Info . 20
Formatting for printing . 21
Formatting headings and footings 187
Formatting requirements . 139
Formatting with tex and texindex 135
Frequently used commands, inserting 14
fubar . 120
Function de�nitions . 123

G
General syntactic conventions 7
Generating menus with indices 39
German S. 102
Globbing . 135
Glyphs . 104
GNU Emacs. 13
GNU Emacs shell, format, print from 137

Going to other Info �les' nodes 57
Grave accent . 101
Group (hold text together vertically) 111
Grouping two de�nitions together 115

H
Hardcopy, printing it . 135
`hboxes', overfull . 140
Header for Texinfo �les . 26
Header of a Texinfo �le . 27
Headings. 187
Headings, page, begin to appear. 34
Height of images. 107
Highlighting text . 69
Highlighting, customized . 76
Hints . 173
Holding text together vertically 111
HTML commands, using ordinary 128
Hungariam umlaut accent 101
Hyphenation, helping T EX do 110
Hyphenation, preventing . 110

I
� . 102
If text conditionally visible 127
ìfinfo ' permissions . 181

Ignored before @setfilename 28
Ignored text . 8
Image formats . 107
Images, inserting . 107
Inches . 107
Include �le requirements . 184
Include �le sample . 184
Include �les . 183
Include �les, and section levels 48
Indentation undoing . 83
Indenting paragraphs . 30
Index entries . 94
Index entries, making . 93
Index entry writing . 94
Index font types . 94
Indexing commands, prede�ned 94
Indexing table entries automatically 89
Indicating commands, de�nitions, etc. 69
Indicating evaluation . 104
Indices. 93
Indices, combining them . 95
Indices, de�ning new . 96
Indices, printing and menus 39
Indices, sorting . 135

214 Texinfo 3.12

Indices, two letter names . 96
Indirect sub�les . 148
Info batch formatting . 147
Info �le installation . 151
Info �le requires @setfilename 27
Info �le, listing new one . 151
Info �le, splitting manually 197
Info �les . 4
Info formatting . 20
Info installed in another directory 152
Info validating a large �le 196
Info, creating an on-line �le 143
Info-directory-list . 152
Info; other �les' nodes . 57
INFOPATH. 152
Initialization �le for T EX input 139
Insert nodes, menus automatically 16
Inserting @, braces. 99
Inserting accents. 101
Inserting dots . 102
Inserting ellipsis . 102
Inserting frequently used commands 14
Inserting space . 99
Inserting special characters and symbols. 99
install-info . 153
Installing an Info �le . 151
Installing Info in another directory 152
Introduction, as part of �le 37
Invoking macros . 133
Itemization . 85

J
� . 102

K
keyboard input . 71
Keys, recommended names. 72
Knuth, Donald . 5

L
 l . 102
 L . 102
Larger or smaller pages. 142
Less cluttered menu entry . 56
License agreement. 37
Line breaks . 109
Line breaks, preventing . 110
Line length, column widths as fraction of 90
Line spacing. 111

Lisp example . 82
Lisp example for a small book 82
List of @-commands. 155
Listing a new info �le . 151
Lists and tables, making . 85
Local variables . 138
Location of menus . 55
Looking for badly referenced nodes. 196
lpr (DVI print command) 136

M
Macro de�nitions . 123, 133
Macro invocation . 133
Macron accent. 101
Macros . 133
Macros, unde�ning . 133
Magni�ed printing . 142
mailto link . 74
makeinfo inside Emacs. 146
makeinfo options . 143
Making a printed manual . 135
Making a tag table automatically 148
Making a tag table manually 197
Making cross references. 59
Making line and page breaks 109
Making lists and tables . 85
Manual characteristics, printed 5
Marking text within a paragraph 69
Marking words and phrases. 69
Master menu . 35
Master menu parts . 36
Mathematical expressions. 103, 128
Menu description, start . 15
Menu entries with two colons 56
Menu example. 57
Menu location . 55
Menu parts . 56
Menu writing . 55
Menus . 55
Menus generated with indices. 39
META key . 72
Meta-syntactic chars for arguments 114
Millimeters . 107
Minimal requirements for formatting 139
Minimal Texinfo �le (requirements) 8
Mistakes, catching . 191
Mode, using Texinfo . 13
Multiple spaces . 100
Multitable column widths . 90
Multitable rows . 90
Must have in Texinfo �le . 8

Concept Index 215

Mutually recursive macros 133

N
Names for indices. 96
Names of index �les . 135
Names recommended for keys. 72
Naming a `Top' Node in references. 65
Need space at page bottom. 112
New index de�ning . 96
New info �le, listing it in ` dir ' �le 151
New Texinfo commands, de�ning 133
Node line requirements. 52
Node line writing . 51
Node, `Top' . 35
Node, de�ned . 50
Nodename must be unique. 52
Nodename, cannot contain 52
Nodes for menus are short. 55
Nodes in other Info �les . 57
Nodes, catching mistakes. 191
Nodes, checking for badly referenced. 196
Not ending a sentence. 99

O
� . 102
� . 102
Obtaining T EX . 203
Occurrences, listing with @occur. 195
� . 102
� . 102
Optional and repeated arguments 114
Options for makeinfo . 143
Ordinary HTML commands, using 128
Ordinary T EX commands, using 128
Other Info �les' nodes . 57
Outline of �le structure, showing it 15
Overfull ` hboxes' . 140
Overview of Texinfo . 3

P
Page breaks. 111
Page delimiter in Texinfo mode 16
Page headings. 187
Page numbering . 187
Page sizes for books. 141
page-delimiter . 16
Pages, starting odd . 29
Paper size, European A4. 141
Paragraph indentation . 30

Paragraph, marking text within 69
Parsing errors . 146
Part of �le formatting and printing 21
Parts of a cross reference. 60
Parts of a master menu . 36
Parts of a menu . 56
Periods, inserting . 99
Permissions . 181
Permissions, printed . 33
Picas . 107
Pictures, inserting . 107
Pinard, Fran�cois . 11
plain TEX . 128
Point, indicating it in a bu�er 106
Pointer creation with makeinfo 54
Pointer validation with makeinfo 145
Points (dimension) . 107
Prede�ned indexing commands 94
Prede�ned names for indices. 96
Preparing to use TEX . 139
Preventing line and page breaks 109
Previous node of Top node 53
Print and format in Texinfo mode 137
Print, format from Emacs shell 137
Printed book and manual characteristics 5
Printed output, indicating it 105
Printed permissions . 33
Printing a region or bu�er . 21
Printing an index . 39
Printing cropmarks . 142
Problems, catching. 191
Prototype row, column widths de�ned by 90

Q
Quotations . 80

R
Raising and lowering sections. 48
Raw formatter commands 128
Recommended names for keys. 72
Rectangle, ugly, black in hardcopy 140
Recursion, mutual . 133
References. 59
References using@inforef . 67
References using@pxref. 66
References using@ref. 65
References using@xref . 61
Referring to other Info �les 57
Re�lling paragraphs . 199
Region formatting and printing 21

216 Texinfo 3.12

Region printing in Texinfo mode 137
Repeated and optional arguments 114
Required in Texinfo �le . 8
Requirements for formatting 139
Requirements for include �les 184
Requirements for updating commands 19
Result of an expression. 104
ridt.eps . 107
Ring accent . 101
Rows, of a multitable . 90
Running an Info formatter . 20
Running Info-validate . 196
Running makeinfo in Emacs. 146

S
Sample @include �le . 184
Sample function de�nition 123
Sample Texinfo �le . 9
Sample Texinfo �le, no comments 179
Scaled points. 107
Section structure of a �le, showing it 15
Sections, raising and lowering. 48
Sentence ending punctuation 100
Sentence non-ending punctuation 99
`Separate' footnote style. 125
Sharp S. 102
Shell formatting with tex and texindex 135
Shell, format, print from . 137
Shell, running makeinfo in 146
Short nodes for menus. 55
Showing the section structure of a �le 15
Showing the structure of a �le 194
Site-wide Texinfo con�guration �le 139
Size of printed book . 141
slanted typewriter font, for @kbd. 71
Small book example. 82
Small book size. 141
Small caps font . 75
Software copying permissions. 37
Sorting indices . 135
Spaces (blank lines). 111
Spacing, inserting . 99
Special characters, commands to insert. 99
Special insertions. 99
Special typesetting commands 102
Specifying index entries . 94
Splitting an Info �le manually 197
� . 102
Stallman, Richard M. 11
Start of header line . 27
Starting chapters . 29

Structure of a �le, showing it 15
Structure, catching mistakes in 191
Structuring of chapters . 43
Subsection-like commands. 47
Subsub commands. 47
Syntactic conventions . 7
Syntax, optional & repeated arguments 114

T
tab . 90
Table of contents . 40
Tables and lists, making . 85
Tables with indexes . 89
Tables, making multi-column 90
Tables, making two-column 88
Tabs; don't use! . 7
Tag table, making automatically 148
Tag table, making manually 197
Template for a de�nition . 113
TEX commands, using ordinary 128
TEX index sorting . 135
TEX input initialization . 139
TEX, how to obtain . 203
texi2dvi . 136
texi2dvi (shell script) . 136
texindex . 135
Texinfo commands, de�ning new 133
Texinfo �le beginning . 25
Texinfo �le ending . 39
Texinfo �le header . 26
Texinfo �le minimum . 8
Texinfo �le section structure, showing it 15
Texinfo mode . 13
Texinfo overview . 3
Texinfo printed book characteristics 5
texinfo.cnf . 28, 141
texinfo.cnf installation . 139
texinfo.tex , installing . 139
TEXINPUTS. 139, 140
TEXINPUTSenvironment variable 139
Text, conditionally visible 127
Thin space between number, dimension. 101
Tie-after accent . 101
Tilde accent . 101
Tips . 173
Title page . 31
Titlepage end starts headings 34
Titlepage permissions . 182
`Top' node . 35
Top node is �rst . 53
`Top' node naming for references. 65

Concept Index 217

`Top' node summary . 54
Tree structuring . 43
Two `First' Lines for @deffn. 115
Two letter names for indices 96
Two named items for @table 89
Two part menu entry . 56
Typesetting commands for dots, etc. 102

U
Umlaut accent . 101
Uncluttered menu entry . 56
Unde�ning macros . 133
Underbar accent . 101
Underdot accent . 101
Uniform resource locator, indicating 74
Uniform resource locator, referring to 67
Unique nodename requirement. 52
Unprocessed text . 8
Unsplit �le creation . 196
Up node of Top node. 53
Updating nodes and menus. 16
Updating requirements . 19
URL, indicating . 74
URL, referring to . 67
Usage tips. 173
user input . 71
User options, marking . 117

User-de�ned Texinfo commands 133

V
Validating a large �le . 196
Validation of pointers . 145
Value of an expression, indicating 104
version number, �nding . 154
Vertical whitespace (`vskip ') 33
Vertically holding text together 111
Visibility of conditional text 127

W
Weisshaus, Melissa. 11
Whitespace, inserting . 99, 100
Width of images . 107
Widths, de�ning multitable column 90
Wildcards . 135
Words and phrases, marking them 69
Writing a menu . 55
Writing an @nodeline . 51
Writing index entries . 94

Z
Zuhn, David D. 11

218 Texinfo 3.12

i

Short Contents

Texinfo Copying Conditions . 1

1 Overview of Texinfo . 3

2 Using Texinfo Mode . 13

3 Beginning a Texinfo File . 25

4 Ending a Texinfo File . 39

5 Chapter Structuring . 43

6 Nodes . 49

7 Menus . 55

8 Cross References . 59

9 Marking Words and Phrases . 69

10 Quotations and Examples . 79

11 Lists and Tables . 85

12 Creating Indices . 93

13 Special Insertions . 99

14 Making and Preventing Breaks . 109

15 De�nition Commands . 113

16 Footnotes . 125

17 Conditionally Visible Text . 127

18 Macros: De�ning New Texinfo Commands 133

19 Format and Print Hardcopy . 135

20 Creating an Info File . 143

21 Installing an Info File . 151

Appendix A @-Command List . 155

Appendix B Tips and Hints . 173

Appendix C A Sample Texinfo File 179

Appendix D Sample Permissions . 181

Appendix E Include Files . 183

Appendix F Page Headings . 187

Appendix G Formatting Mistakes . 191

Appendix H Re�lling Paragraphs . 199

Appendix I @-Command Syntax . 201

Appendix J How to Obtain TEX . 203

Command and Variable Index . 205

Concept Index . 211

ii Texinfo 3.12

iii

Table of Contents

Texinfo Copying Conditions 1
1 Overview of Texinfo . 31.1 Info �les . 41.2 Printed Books . 51.3 @-commands . 61.4 General Syntactic Conventions . 71.5 Comments . 71.6 What a Texinfo File Must Have . 81.7 Six Parts of a Texinfo File . 91.8 A Short Sample Texinfo File . 91.9 Acknowledgements . 11
2 Using Texinfo Mode . 132.1 The Usual GNU Emacs Editing Commands 132.2 Inserting Frequently Used Commands . 142.3 Showing the Section Structure of a File 152.4 Updating Nodes and Menus . 162.4.1 Updating Requirements . 192.4.2 Other Updating Commands . 192.5 Formatting for Info . 202.6 Formatting and Printing . 212.7 Texinfo Mode Summary . 22
3 Beginning a Texinfo File 253.1 Sample Texinfo File Beginning . 253.2 The Texinfo File Header . 263.2.1 The First Line of a Texinfo File 273.2.2 Start of Header . 273.2.3 @setfilename . 273.2.4 @settitle . 283.2.5 @setchapternewpage . 293.2.6 Paragraph Indenting . 303.2.7 End of Header . 303.3 Summary and Copying Permissions for Info 303.4 The Title and Copyright Pages . 313.4.1 @titlepage . 313.4.2 @titlefont, @center, and @sp 323.4.3 @title, @subtitle, and @author 323.4.4 Copyright Page and Permissions 333.4.5 Heading Generation . 343.4.6 The @headings Command. 34

iv Texinfo 3.12
3.5 The `Top' Node and Master Menu . 353.5.1 Parts of a Master Menu . 363.6 Software Copying Permissions . 37

4 Ending a Texinfo File . 394.1 Index Menus and Printing an Index . 394.2 Generating a Table of Contents. 404.3 @bye File Ending . 41
5 Chapter Structuring . 435.1 Tree Structure of Sections . 435.2 Types of Structuring Commands . 435.3 @top . 445.4 @chapter . 445.5 @unnumbered, @appendix . 455.6 @majorheading, @chapheading . 455.7 @section . 455.8 @unnumberedsec, @appendixsec, @heading 465.9 The @subsection Command . 465.10 The @subsection-like Commands . 475.11 The `subsub' Commands . 475.12 @raisesections and @lowersections 48
6 Nodes . 496.1 Node and Menu Illustration . 496.2 The @node Command . 506.2.1 How to Write an @node Line . 516.2.2 @node Line Tips . 526.2.3 @node Line Requirements . 526.2.4 The First Node . 536.2.5 The @top Sectioning Command 536.2.6 The `Top' Node Summary . 546.3 Creating Pointers with makeinfo . 54
7 Menus . 557.1 Writing a Menu . 557.2 The Parts of a Menu . 567.3 Less Cluttered Menu Entry . 567.4 A Menu Example . 577.5 Referring to Other Info Files . 57

v
8 Cross References . 598.1 Di�erent Cross Reference Commands . 598.2 Parts of a Cross Reference . 608.3 @xref . 618.3.1 @xref with One Argument . 618.3.2 @xref with Two Arguments . 628.3.3 @xref with Three Arguments 628.3.4 @xref with Four and Five Arguments 638.4 Naming a `Top' Node . 658.5 @ref . 658.6 @pxref . 668.7 @inforef . 678.8 @uref{url[, displayed-text]} . 67
9 Marking Words and Phrases 699.1 Indicating De�nitions, Commands, etc. 699.1.1 @code{sample-code} . 709.1.2 @kbd{keyboard-characters} . 719.1.3 @key{key-name} . 719.1.4 @samp{text } . 729.1.5 @var{metasyntactic-variable} 739.1.6 @file{�le-name} . 739.1.7 @dfn{term} . 749.1.8 @cite{reference} . 749.1.9 @url{uniform-resource-locator} 749.1.10 @email{email-address[, displayed-text]} 749.2 Emphasizing Text . 759.2.1 @emph{text } and @strong{text } 759.2.2 @sc{text }: The Small Caps Font 759.2.3 Fonts for Printing, Not Info . 769.2.4 Customized Highlighting . 76
10 Quotations and Examples 7910.1 The Block Enclosing Commands . 7910.2 @quotation . 8010.3 @example . 8010.4 @noindent . 8110.5 @lisp . 8210.6 @smallexample and @smalllisp . 8210.7 @display . 8310.8 @format . 8310.9 @exdent: Undoing a Line's Indentation 8310.10 @flushleft and @flushright . 8310.11 Drawing Cartouches Around Examples 84

vi Texinfo 3.12
11 Lists and Tables . 8511.1 Making an Itemized List . 8511.2 Making a Numbered or Lettered List 8711.3 Making a Two-column Table . 8811.3.1 @ftable and @vtable . 8911.3.2 @itemx . 8911.4 Multi-column Tables . 9011.4.1 Multitable Column Widths . 9011.4.2 Multitable Rows . 90
12 Creating Indices . 9312.1 Making Index Entries. 9312.2 Prede�ned Indices . 9312.3 De�ning the Entries of an Index . 9412.4 Combining Indices . 9512.4.1 @syncodeindex . 9512.4.2 @synindex . 9612.5 De�ning New Indices . 96
13 Special Insertions . 9913.1 Inserting @ and Braces . 9913.1.1 Inserting `@' with @@ . 9913.1.2 Inserting `{' and `}'with @{ and @} 9913.2 Inserting Space . 9913.2.1 Not Ending a Sentence . 9913.2.2 Ending a Sentence . 10013.2.3 Multiple Spaces . 10013.2.4 @dmn{dimension}: Format a Dimension 10113.3 Inserting Accents . 10113.4 Inserting Ellipsis, Dots, and Bullets . 10213.4.1 @dots{} (. . .) . 10213.4.2 @bullet{} (�) . 10213.5 Inserting TEX and the Copyright Symbol 10313.5.1 @TeX{} (TEX) . 10313.5.2 @copyright{} (c
) . 10313.6 @pounds{} ($): Pounds Sterling . 10313.7 @minus{} (�): Inserting a Minus Sign 10313.8 @math - Inserting Mathematical Expressions 10313.9 Glyphs for Examples . 10413.9.1 @result{} ()): Indicating Evaluation 10413.9.2 @expansion{} (7!): Indicating an Expansion . . 10413.9.3 @print{} (a): Indicating Printed Output 10513.9.4 @error{} (error): Indicating an Error Message. 10513.9.5 @equiv{} (�): Indicating Equivalence 10613.9.6 @point{} (?): Indicating Point in a Bu�er 10613.10 Inserting Images . 107

vii
14 Making and Preventing Breaks 10914.1 @*: Generate Line Breaks . 10914.2 @- and @hyphenation: Helping TEX hyphenate 11014.3 @w{text }: Prevent Line Breaks . 11014.4 @sp n: Insert Blank Lines . 11114.5 @page: Start a New Page . 11114.6 @group: Prevent Page Breaks . 11114.7 @need mils: Prevent Page Breaks . 112
15 De�nition Commands 11315.1 The Template for a De�nition . 11315.2 Optional and Repeated Arguments . 11415.3 Two or More `First' Lines . 11515.4 The De�nition Commands . 11515.4.1 Functions and Similar Entities 11515.4.2 Variables and Similar Entities 11715.4.3 Functions in Typed Languages. 11815.4.4 Variables in Typed Languages 11915.4.5 Object-Oriented Programming 12015.4.6 Data Types . 12215.5 Conventions for Writing De�nitions . 12315.6 A Sample Function De�nition . 123
16 Footnotes . 12516.1 Footnote Commands . 12516.2 Footnote Styles . 125
17 Conditionally Visible Text 12717.1 Conditional Not Commands. 12717.2 Raw Formatter Commands . 12817.3 @set, @clear, and @value . 12817.3.1 @ifset and @ifclear . 12817.3.2 @value . 13017.3.3 @value Example. 131
18 Macros: De�ning New Texinfo Commands

. 13318.1 De�ning Macros . 13318.2 Invoking Macros . 133

viii Texinfo 3.12
19 Format and Print Hardcopy 13519.1 Format using tex and texindex . 13519.2 Format using texi2dvi . 13619.3 Shell Print Using lpr -d . 13619.4 From an Emacs Shell . 13719.5 Formatting and Printing in Texinfo Mode 13719.6 Using the Local Variables List . 13819.7 TEX Formatting Requirements Summary 13919.8 Preparing to Use TEX . 13919.9 Overfull \hboxes" . 14019.10 Printing \Small" Books . 14119.11 Printing on A4 Paper . 14119.12 Cropmarks and Magni�cation . 142
20 Creating an Info File 14320.1 Running makeinfo from a Shell . 14320.2 Options for makeinfo . 14320.3 Pointer Validation . 14520.4 Running makeinfo inside Emacs . 14620.5 The texinfo-format... Commands 14720.6 Batch Formatting . 14720.7 Tag Files and Split Files . 148
21 Installing an Info File 15121.1 Listing a New Info File . 15121.2 Info Files in Other Directories . 15221.3 Installing Info Directory Files . 15321.4 Invoking install-info . 153
Appendix A @-Command List 155
Appendix B Tips and Hints 173
Appendix C A Sample Texinfo File 179
Appendix D Sample Permissions 181D.1 `ifinfo' Copying Permissions . 181D.2 Titlepage Copying Permissions . 182
Appendix E Include Files 183E.1 How to Use Include Files . 183E.2 texinfo-multiple-files-update . 183E.3 Include File Requirements . 184E.4 Sample File with @include . 184E.5 Evolution of Include Files . 185

ix
Appendix F Page Headings 187F.1 Standard Heading Formats . 187F.2 Specifying the Type of Heading . 188F.3 How to Make Your Own Headings . 189
Appendix G Formatting Mistakes 191G.1 Catching Errors with Info Formatting 191G.2 Catching Errors with TEX Formatting 192G.3 Using texinfo-show-structure . 194G.4 Using occur. 195G.5 Finding Badly Referenced Nodes . 196G.5.1 Running Info-validate . 196G.5.2 Creating an Unsplit File . 196G.5.3 Tagifying a File . 197G.5.4 Splitting a File Manually . 197
Appendix H Re�lling Paragraphs 199
Appendix I @-Command Syntax 201
Appendix J How to Obtain TEX 203
Command and Variable Index 205
Concept Index . 211

x Texinfo 3.12

	Texinfo Copying Conditions
	Overview of Texinfo
	Info files
	Printed Books
	@-commands
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Six Parts of a Texinfo File
	A Short Sample Texinfo File
	Acknowledgements

	Using Texinfo Mode
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Section Structure of a File
	Updating Nodes and Menus
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Formatting and Printing
	Texinfo Mode Summary

	Beginning a Texinfo File
	Sample Texinfo File Beginning
	The Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename
	@settitle
	@setchapternewpage
	Paragraph Indenting
	End of Header

	Summary and Copying Permissions for Info
	The Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page and Permissions
	Heading Generation
	The @headings Command

	The `Top' Node and Master Menu
	Parts of a Master Menu

	Software Copying Permissions

	Ending a Texinfo File
	Index Menus and Printing an Index
	Generating a Table of Contents
	@bye File Ending

	Chapter Structuring
	Tree Structure of Sections
	Types of Structuring Commands
	@top
	@chapter
	@unnumbered, @appendix
	@majorheading, @chapheading
	@section
	@unnumberedsec, @appendixsec, @heading
	The @subsection Command
	The @subsection-like Commands
	The `subsub' Commands
	@raisesections and @lowersections

	Nodes
	Node and Menu Illustration
	The @node Command
	How to Write an @node Line
	@node Line Tips
	@node Line Requirements
	The First Node
	The @top Sectioning Command
	The `Top' Node Summary

	Creating Pointers with makeinfo

	Menus
	Writing a Menu
	The Parts of a Menu
	Less Cluttered Menu Entry
	A Menu Example
	Referring to Other Info Files

	Cross References
	Different Cross Reference Commands
	Parts of a Cross Reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Naming a `Top' Node
	@ref
	@pxref
	@inforef
	@uref{@char 123}url[, displayed-text]{@char 125}

	Marking Words and Phrases
	Indicating Definitions, Commands, etc.
	@code{@char 123}sample-code{@char 125}
	@kbd{@char 123}keyboard-characters{@char 125}
	@key{@char 123}key-name{@char 125}
	@samp{@char 123}text{@char 125}
	@var{@char 123}metasyntactic-variable{@char 125}
	@file{@char 123}file-name{@char 125}
	@dfn{@char 123}term{@char 125}
	@cite{@char 123}reference{@char 125}
	@url{@char 123}uniform-resource-locator{@char 125}
	@email{@char 123}email-address[, displayed-text]{@char 125}

	Emphasizing Text
	@emph{@char 123}text{@char 125} and @strong{@char 123}text{@char 125}
	@sc{@char 123}text{@char 125}: The Small Caps Font
	Fonts for Printing, Not Info
	Customized Highlighting

	Quotations and Examples
	The Block Enclosing Commands
	@quotation
	@example
	@noindent
	@lisp
	@smallexample and @smalllisp
	@display
	@format
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	Drawing Cartouches Around Examples

	Lists and Tables
	Making an Itemized List
	Making a Numbered or Lettered List
	Making a Two-column Table
	@ftable and @vtable
	@itemx

	Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	Creating Indices
	Making Index Entries
	Predefined Indices
	Defining the Entries of an Index
	Combining Indices
	@syncodeindex
	@synindex

	Defining New Indices

	Special Insertions
	Inserting @ and Braces
	Inserting @ with @@
	Inserting {@char 123} and {@char 125}with @{@char 123} and @{@char 125}

	Inserting Space
	Not Ending a Sentence
	Ending a Sentence
	Multiple Spaces
	@dmn{@char 123}dimension{@char 125}: Format a Dimension

	Inserting Accents
	Inserting Ellipsis, Dots, and Bullets
	@dots{@char 123}{@char 125} (...{})
	@bullet{@char 123}{@char 125} (@implicitmath @ptexbullet @implicitmath {})

	Inserting TeX{} and the Copyright Symbol
	@TeX{@char 123}{@char 125} (TeX{})
	@copyright{@char 123}{@char 125} ({@lineskiplimit -@maxdimen @unhbox @voidb@x @vtop {@baselineskip @z@skip @lineskip .25ex@everycr {}@tabskip @z@skip @halign {##@crcr @hfil @raise .07ex@hbox {c}@hfil @crcr @unhbox @voidb@x @hbox {$@mathsurround @z@ @mathchar "20D$}@crcr }}}{})

	@pounds{@char 123}{@char 125} ({@fam @itfam @tenit @$}{}): Pounds Sterling
	@minus{@char 123}{@char 125} (@implicitmath -@implicitmath {}): Inserting a Minus Sign
	@math - Inserting Mathematical Expressions
	Glyphs for Examples
	@result{@char 123}{@char 125} (@unhbox @voidb@x @raise .15ex@hbox to 1em{@hfil $@Rightarrow $@hfil }{}): Indicating Evaluation
	@expansion{@char 123}{@char 125} (@unhbox @voidb@x @raise .1ex@hbox to 1em{@hfil $@mapstochar @rightarrow $@hfil }{}): Indicating an Expansion
	@print{@char 123}{@char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@dashv $@hfil }{}): Indicating Printed Output
	@error{@char 123}{@char 125} (@unhbox @voidb@x @lower .7ex@copy @errorbox {}): Indicating an Error Message
	@equiv{@char 123}{@char 125} (@unhbox @voidb@x @lower .1ex@hbox to 1em{@hfil $@ptexequiv $@hfil }{}): Indicating Equivalence
	@point{@char 123}{@char 125} ($@star ${}): Indicating Point in a Buffer

	Inserting Images

	Making and Preventing Breaks
	@*: Generate Line Breaks
	@- and @hyphenation: Helping TeX{} hyphenate
	@w{@char 123}text{@char 125}: Prevent Line Breaks
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	Definition Commands
	The Template for a Definition
	Optional and Repeated Arguments
	Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Object-Oriented Programming
	Data Types

	Conventions for Writing Definitions
	A Sample Function Definition

	Footnotes
	Footnote Commands
	Footnote Styles

	Conditionally Visible Text
	Conditional Not Commands
	Raw Formatter Commands
	@set, @clear, and @value
	@ifset and @ifclear
	@value
	@value Example

	Macros: Defining New Texinfo Commands
	Defining Macros
	Invoking Macros

	Format and Print Hardcopy
	Format using tex and texindex
	Format using texi2dvi
	Shell Print Using lpr -d
	From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX{} Formatting Requirements Summary
	Preparing to Use TeX{}
	Overfull ``hboxes''
	Printing ``Small'' Books
	Printing on A4 Paper
	Cropmarks and Magnification

	Creating an Info File
	Running makeinfo from a Shell
	Options for makeinfo
	Pointer Validation
	Running makeinfo inside Emacs
	The texinfo-format...{} Commands
	Batch Formatting
	Tag Files and Split Files

	Installing an Info File
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	@-Command List
	Tips and Hints
	A Sample Texinfo File
	Sample Permissions
	ifinfo Copying Permissions
	Titlepage Copying Permissions
	Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include File Requirements
	Sample File with @include
	Evolution of Include Files
	Page Headings
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings
	Formatting Mistakes
	Catching Errors with Info Formatting
	Catching Errors with TeX{} Formatting
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Running Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	Refilling Paragraphs
	@-Command Syntax
	How to Obtain TeX{}
	Command and Variable Index
	Concept Index

